В настоящее время Теория обыкновенных дифференциальных уравнений сводится главным образом к аналитическому исследованию функций, определяемых этими уравнениями.
Математиков преимущественно интересует, для каких значений переменного x функция y, определяемая уравнением f(x, y, y’ … y^(n)) = 0, при определённых начальных значениях y, y’, … y^(n) представляет голоморфную функцию от x (Коши, Липшиц, Брю-Бук), имеет ли y особенные точки и какие из этих точек зависят от произвольных постоянных и какая независимая (Фукс, Пуанкаре, Пенлеве), каковы сходящиеся разложения, определяющие y около существенно особенных точек (Фукс, Пуанкаре, Пикар) и каковы асимптотические выражения этой функции, для которых является возможным использование помощи разложения (Пуанкаре, Горн, Ляпунов, Брайдич?).