SCI Библиотека

SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…

Книга: ТЕОРИЯ РИМАНОВЫХ ПОВЕРХНОСТЕЙ
ТЕОРИЯ РИМАНОВЫХ ПОВЕРХНОСТЕЙ

Пособие предназначено в первую очередь студентам-математикам ГАГУ, изучающим курс
«Теория римановых поверхностей». В нём рассматриваются вопросы, касающиеся в основном
методов построения римановых поверхностей многозначных функций, поиска точек ветвления для
таких функций и дифференциалов на римановых поверхностях. Кроме того, пособие может быть
полезно студентам, обучающимся в магистратуре по направлению математика и слушателям курсов
дополнительных образовательных программ по математике

Формат документа: pdf
Год публикации: 2022
Кол-во страниц: 60 страниц
Доступ: Всем
Книга: ОПТИМИЗАЦИЯ ЦЕЛЕВЫХ ФУНКЦИЙ. АНАЛИТИКА. ЧИСЛЕННЫЕ МЕТОДЫ. ПЛАНИРОВАНИЕ ЭКСПЕРИМЕНТА
СРЕДНЕЕ ЗНАЧЕНИЕ, АЛГЕБРАИЧЕСКОЕ УРАВНЕНИЕ, СОБСТВЕННОЕ ЗНАЧЕНИЕ, линейная алгебра, КВАЗИОБРАТНАЯ МАТРИЦА, ОРТОГОНАЛЬНЫЙ ПРОЕКТОР, оптимизация, ЦЕЛЕВАЯ ФУНКЦИЯ, ЭКСТРЕМУМ, ЧИСЛЕННАЯ ОПТИМИЗАЦИЯ, УСЛОВНАЯ ОПТИМИЗАЦИЯ, факторный анализ, Планирование эксперимента, МЕТОД РЕГУЛЯРИЗАЦИИ, КОМПЛЕКСНЫЙ АНАЛИЗ

Главная цель данной монографии состоит в том, чтобы рассмотреть основные методы оптимизации целевых функций (вплоть до математического программирования) в логичном порядке, подчёркивающем их генезис, а также заполнить имеющиеся “белые пятна”.

В 1-й главе излагаются аналитические аспекты решения задач на безусловный экстремум для целевых функций от скалярной или от векторной переменной. Рассматриваются решения специальных задач, в том числе задачи на доказательство иерархии всех средних величин, которой в 1, 3 и 4-й главах придаётся особое иллюстративное значение.

Во 2-й главе излагаются аналитические аспекты решения задач на условный экстремум для целевых функций от векторной переменной – либо зависимой от каких-нибудь параметров, либо ограниченной какими-нибудь уравнениями связи. Кроме того, в этой главе рассматриваются аналитические основы предельных методов. Показана геометрическая взаимосвязь всех трёх направлений условной оптимизации с использованием собственных функциональных проекторов в двух симметричных матричных формах. Выведено характеристическое (вековое) уравнение в стационарной точке для “условных собственных значений” матрицы Гессе.

В 3-й главе развит формальный анализ для неголоморфных функций от комплексных переменных (без увеличения их размерности как обычно вдвое). С применением формального анализа развиты методы безусловной и условной оптимизации для целевых вещественных функций от одной или нескольких пар комплексных сопряжённых переменных или от смешанных переменных.

В 4-й главе даны важные примеры решения экстремальных проблем в общей и линейной алгебре. Как один из результатов отметим теорему о полных требованиях к коэффициентам вещественного алгебраического уравнения для вещественности и положительности его корней.

В 5-й главе рассматриваются основные численные методы поиска экстремума для целевых функций 0-го, 1-го и 2-го порядка от одной или от нескольких скалярных переменных. Отдельно изложены методы поиска условного экстремума в двух ранее указанных вариантах переменной

Формат документа: pdf
Год публикации: 2009
Кол-во страниц: 337 страниц
Владелец: Афонин Сергей
Доступ: Всем
Книга: ПРОЕКТИВНОЕ И ИНЪЕКТИВНОЕ ОПИСАНИЯ В КОМПЛЕКСНОЙ ОБЛАСТИ. СПЕКТРАЛЬНЫЙ СИНТЕЗ И ЛОКАЛЬНОЕ ОПИСАНИЕ АНАЛИТИЧЕСКИХ ФУНКЦИЙ
ПРОЕКТИВНОЕ И ИНЪЕКТИВНОЕ ОПИСАНИЯ В КОМПЛЕКСНОЙ ОБЛАСТИ, СПЕКТРАЛЬНЫЙ СИНТЕЗ И ЛОКАЛЬНОЕ ОПИСАНИЕ АНАЛИТИЧЕСКИХ ФУНКЦИЙ, АНАЛИТИЧЕСКИЕ ФУНКЦИИ

Настоящее исследование посвящено спектральному синтезу для конечной системы дифференциальных операторов (конечного порядка) с постоянными коэффициентами. Задача спектрального синтеза для системы операторов состоит в определении условий, при которых замкнутое инвариантное относительно каждого оператора из данной системы подпространство совпадает с замыканием линейной оболочки совместных корневых элементов операторов системы, лежащих в нем. Такая постановка задачи является новой даже в классической ситуации. Однако именно в такой постановке задача спектрального синтеза приобретает завершённость формы и допускает естественное обобщение на случай многих комплексных переменных. Книга содержит систематизированное изложение результатов исследований автора, связанных с двойственными переходами от задач спектрального синтеза в многомерных областях к эквивалентным задачам локального описания аналитических функций нескольких комплексных переменных и с аппроксимационными задачами для однородных уравнений типа свёртки

Формат документа: pdf
Год публикации: 2013
Кол-во страниц: 305 страниц
Владелец: Афонин Сергей
Доступ: Всем
Книга: ДЕЛЬТА-ФУНКЦИЯ ДИРАКА

В данном пособии представлены различные способы определения и вве-
дения дельта-функции Дирака, ее применение при решении задач, формулиру-
ются задачи для семинарских занятий, приводятся образцы заданий для прак-
тических занятий.
Учебное пособие предназначено для студентов, обучающихся по специ-
альностям прикладная математика, математика, физика.

Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 35 страниц
Доступ: Всем
Книга: СУММИРОВАНИЕ РЯДОВ НЕПРЕРЫВНЫМИ ДРОБЯМИ
НЕПРЕРЫВНЫЕ ДРОБИ, СУММИРОВАНИЕ РАСХОДЯЩИХСЯ РЯДОВ, ФУНКЦИЯ ВЕЙЕРШТРАССА, АЛГОРИТМ РУТИСХАУЗЕРА, РЕШЕНИЕ СЛАУ НЕПРЕРЫВНЫМИ ДРОБЯМИ

В книге рассматривается иное, нежели традиционное, определение сходимости непрерывных дробей. Новый метод суммирования используется при определении значений расходящихся в классическом смысле непрерывных дробей и рядов. Предложен общий подход к построению производящих функций рядов. Рассматриваются операции с комплексными числами, представленными подходящими дробями непрерывных дробей.

В заключительной главе помещены материалы о некоторых российских математиках, внесших значительный вклад в теорию непрерывных дробей.

Книга может быть полезна специалистам, работающим в прикладной и вычислительной математике, а также студентам и аспирантам, обучающимся по этим направлениям.

Работа выполнена при реализации научного проекта в рамках проектной части государственного задания Минобрнауки России № 2.3928.2017/ПЧ.

Формат документа: pdf
Год публикации: 2019
Кол-во страниц: 536 страниц
Владелец: Афонин Сергей
Доступ: Всем
Книга: РАВНОМЕРНЫЕ ПРИБЛИЖЕНИЯ ФУНКЦИЙ РЕШЕНИЯМИ ЭЛЛИПТИЧЕСКИХ УРАВНЕНИЙ
эллиптические уравнения

В монографии рассматриваются результаты, полученные в течение последних 20 лет в задачах равномерного приближения функций решениями однородных эллиптических уравнений второго порядка с постоянными комплексными коэффициентами.

В частности, дается изложение схемы доказательств известных в теории приближений гипотез Вердеры и О’Фаррелла (о равномерном приближении бианалитическими функциями на произвольных плоских компактах и о равномерном приближении гармоническими функциями соответственно). Изучается техника соответствующих приближений, основанная на развитии конструктивной техники Витушкина.

Формат документа: pdf
Год публикации: 2019
Кол-во страниц: 135 страниц
Владелец: Афонин Сергей
Доступ: Всем
Книга: ДЕЛЬТА-ФУНКЦИЯ ДИРАКА
ДЕЛЬТА-ФУНКЦИЯ ДИРАКА

В данном пособии представлены различные способы определения и введения дельта-функции Дирака, ее применение при решении задач, формулируются задачи для семинарских занятий, приводятся образцы заданий для практических занятий.

Учебное пособие предназначено для студентов, обучающихся по специальностям прикладная математика, математика, физика.

Формат документа: pdf
Кол-во страниц: 35 страниц
Владелец: Афонин Сергей
Доступ: Всем