SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Учебное пособие подготовлено в соответствии с учебной програм-
мой курса «Высшая математика». Пособие содержит теоретические во-
просы, примеры решения задач и задачи с ответами по разделам «Анали-
тическая геометрия», «Линейная алгебра», «Математический анализ»,
«Теория вероятностей и основы математической статистики».
Предназначено для студентов первого курса, обучающихся по
направлениям: 43.03.01 – сервис, 43.03.02 – туризм, 39.03.01 – социоло-
гия, 43.03.03 – гостиничное дело.
Первая часть пособие содержит методические рекомендации к практическим
работам и варианты практических работ по общеобразовательной учебной дисциплине
«Математика». Сборник предназначен для обучающихся специальностям среднего
профессионального образования с целью тренировки качества знаний по математике, а
также оказания помощи в выполнении практических работ по дисциплине.
Преподаватели математики материалы сборника могут использовать для проведения
текущего контроля уровня сформированности знаний, умений и компетенций
обучающихся по учебной дисциплине «Математика»
В учебном пособии представлены основы теории и способы
решения дифференциальных уравнений. Приведены примеры
решений задач, подобраны упражнения для аудиторных занятий
и индивидуальные задания для расчетно-графических работ.
Пособие предназначено для обучающихся по направлениям
подготовки 13.03.02 Электроэнергетика и электротехника и 35.03.06
Агроинженерия
Приводятся основные понятия теории графов и описание алгоритмов, наиболее часто
используемых при работе с графами. Также пособие содержит цикл лабораторных работ по
дисциплине «Теория графов», включая порядок их выполнения и индивидуальные задания.
Предназначено для студентов, обучающихся по направлению 09.03.02 «Информаци-
онные системы и технологии».
Для удобства работы с изданием рекомендуется пользоваться функцией Bookmarks (Закладки)
в боковом меню программы Adobe Reader и системой ссылок.
Предлагаемая книга является систематическим изложением «оснований» теории деформаций регулярных поверхностей, в первую очередь теории изгибаний и бесконечно малых изгибаний. Несомненна её актуальность, поскольку последняя в мировой литературе подробная книга, посвящённая теории изгибаний, вышла в 19 веке (Млодзеевскiй Б.К. Исследованiя объ изгибанiи поверхностей. М. 1866). В настоящий момент в монографической и учебной научной литературе отсутствуют подробные сочинения такого рода (как на русском, так и на любом другом языке), которые могли бы быть доступны по уровню изложения, как научным работникам, так и студентам. Объяснением такого положения вещей может служить достаточно интенсивное развитие и осмысление основных понятий теории, продолжающееся по сей день. Значительный вклад в формирование базовых понятий теории изгибаний внесли геометры Ростовского государственного университета. В настоящий момент результаты по «основаниям» теории деформаций регулярных поверхностей приобрели достаточно законченный вид и до сих пор не получили отражения в монографической и учебной литературе. Книга будет полезна специалистам в области математики, теоретической и прикладной механики, а также студентам, обучающимся по программам магистратуры в области математики, механики и современной инженерно-технической деятельности. Публикуется в авторской редакции.
Данное пособие содержит теоретические материалы, способы и методы
решения практических задач, задания для самостоятельной работы студентов,
контрольные вопросы для самопроверки, список рекомендуемой литературы.
Книга является учебным пособием для студентов, обучающихся по спе-
циальностям прикладная математика, математика, физика.
В монографии на основании онтологической структуры (сознание, время, материя) и общегносеологических закономерностей отражения действительности в сознании человека (шестиуровневая структура отражения) описывается периодизация истории математики (по линии число-уравнение-функция-оператор…); периодизация развития представлений о причинности; периодизация развития естественных наук (физики, механики, химии), как области приложения математики; дополнительно описаны ступени развития экономики, ступени развития научной методологии. Выделены периоды однородного развития наук и переходы на качественно новый уровень абстракции научного знания. Отмечено, что высший уровень развития непредикативный (самоссылочный) не сводим к абстракциям низших уровней. Показана содержательная взаимосвязь в развитии наук в пределах одного периода. Указано, что последовательность изучения математических и иных научных понятий в системе образования повторяет те же уровни абстракции, что и в истории науки. В истории экономики при описании подпериодов её развития обоснована конечность современных технологических укладов (пятый, современный - предельный). На широком фактическом материале показано, что развитие науки следует общим закономерностям отражения действительности в сознании человека и соответствует ступеням постижения истины; обосновывается необходимость онтологической полноты научных теорий. Подчёркивается, что развитие науки и культуры имеет конечной целью (высшей, шестой ступенью) обеспечение возможностей реализации свобод человека в виде общезначимой десятичастной системы ценностей, реализуемой при смене поколений и воспроизводстве структуры государства и общества. Указаны ограничения математики и формально-аксиоматической методологии. Книга предназначена для научных работников, преподавателей, учителей, аспирантов и студентов высших учебных заведений.
В монографии с позиций системного анализа и на основе численных методов рассмотрен круг задач противоборства технических систем в конфликтных ситуациях. Приводятся математические модели и алгоритмы для численного решения оптимизационных задач противоборства технических систем в условиях конфликта, начиная с простейших с восстановлением отказавших в процессе противоборства компонентов системы и с динамическим перераспределением средств защиты в процессе конфликта и кончая задачами оптимального управления подвижными техническими объектами в процессе противоборства с неподвижными и подвижными объектами. Предназначена для научных работников, аспирантов и магистрантов, занимающихся изучением и использованием на практике математических моделей и алгоритмов оптимального управления противоборствующими техническими системами в конфликтных ситуациях.
В работе представлен простой путь избавления от ряда известных «проблем» математики, связанных, например, с умножением и деление на ноль, рассмотрением комплексных чисел и многое другое. В частности, читатель сможет узнать, чему равен квадратный корень из единицы и минус единицы, увидеть новые решения известных уравнений. Книга предназначена для любознательного читателя, способного отвлечься от существующих стереотипов и открыть для себя новые стороны и страницы математики, которая ориентирована на решение новых задач. В ней имеются программы на Фортране для современных персональных компьютеров (ПК), которые позволят оперативно провести свои собственные математические эксперименты на ПК. Книга может быть полезна физикам и химикам, так как предложенный подход дает возможность наполнить некоторые известные математические формулы новым физическим содержанием и наоборот.
В книге описаны результаты теории множеств с самопринадлежностью, связанные с основаниями теории меры и имеющие приложения,- это результаты следующие по отношению к предыдущей монографии автора по данной теме. Подробно рассмотрена история попыток доказательств непротиворечивости математики (от оснований геометрии до теории множеств) и доказательство непротиворечивости теории множеств с самопринадлежностью; указано, что доказательство непротиворечивости имеется только для самоссылочных (непредикативных) теорий); описаны свойства и приложения непредикативности. Описана иерархия уровней бесконечности: конечные множества, счётные множества, недостижимые множества и множество всех множеств (которое не является недостижимым); указано, что эти уровни замкнуты, из конечных множеств конечными комбинациями получаются конечные, из счётных счётными и недостижимыми комбинациями - счётные, из недостижимых - недостижимые (мощность множества всех множеств не выразима мощностью упорядоченных структур). Указано на структурный изоморфизм цепи 10-деревьев (обозначений десятичных чисел), покрывающий структурный изоморфизм нити недостижимых последователей (точек на прямой),- что служит одним из оснований теории меры. Доказаны теоремы о счётной (конечной) вычислимости неподвижной точки, связывающие математику непрерывных величин и вычислительную математику. Описаны основания теории меры, необходимость эталона меры, его воспроизводимость и самоизмеримость. На этом основании очевидно строится классический математический анализ, теории дифференциала и интеграла (где бесконечно-малые величины - это убывающие до 0 переменные). Приложения результатов теории множеств с самопринадлежностью и теории меры относятся к теории управления, теории вероятностей, решению проблем обоснования математики. Книга предназначена для научных работников, преподавателей, аспирантов и студентов вузов, интересующихся основаниями и приложениями математики. (92 стр., 3 табл., 18 рис., библиография 131 наимен.)