В монографии изложены основы тензорной тригонометрии,
базирующейся на квадратичных метриках в многомерных арифметических пространствах. В теоретическом плане тензорная тригонометрия естественным образом дополняет классические разделы аналитической геометрии и линейной алгебры. В практическом плане она даёт инструментарий для решения разнообразных геометрических задач в многомерных аффинных, евклидовых и псевдоевклидовых пространствах. Движения, определяемые тензорной тригонометрией, задают геометрию в малом для вложенных в них подпространств постоянной кривизны.
Кроме того, тензорная ротационная и деформационная тригонометрия в элементарной форме применена к изучению движений в неевклидовых геометриях – сферической и гиперболической, а также в теории относительности. В результате получены наиболее общие – матричные, векторные и скалярные представления этих движений в весьма наглядной тригонометрической форме. Новые методы тензорной тригонометрии предназначены для применения в ряде областей математики и математической физики.
Для специалистов в областях многомерных геометрий арифметических пространств, аналитической геометрии, линейной алгебры, неевклидовых геометрий и теории относительности; для преподавателей, аспирантов и студентов физико-математических специальностей.