SCI Библиотека

SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…

Книга: Введение в нелинейную физику: от маятника до турбулентности и хаоса

Дается представление о характерных нелинейных процессах современной классической физики для частиц и полей. Приведены многочисленные примеры. Рассматриваемые явления естественным образом включают как регулярные процессы, так и динамический хаос и турбулентность. Чтение книги не требует от читателя специальной подготовки.

Для студентов старших курсов и научных работников, интересующихся методами и приложениями современного нелинейного анализа.

Формат документа: pdf, djvu
Год публикации: 1988
Кол-во страниц: 379 страниц
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Метод разделения переменных в математической физике

Учебное пособие предназначено для студентов, магистрантов и преподавателей и может быть использовано для изучения дисциплин, связанных с решением дифференциальных уравнений в частных производных в самых разнообразных отраслях прикладной науки.

Оно также будет полезно при подготовке к семинарам, факультативным занятиям и при самостоятельном изучении вопросов данной тематики. Материал книги может быть широко использован на лекциях и практических занятиях по курсу математической физики.

Целью настоящей книги является изложение основных принципов решения линейных и нелинейных уравнений математической физики, а также изучение современных направлений развития этой отрасли знаний.

Формат документа: pdf
Год публикации: 2009
Кол-во страниц: 92 страницы
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Алгебраические проблемы математический и теоретической физики

Монография возникла в результате обработки научных докладов и лекций по алгебраическим проблемам математической и теоретической физики, читавшихся автором для научных работников, преподавателей вузов, аспирантов и студентов. В ней с единой точки зрения излагаются общие алгебраические понятия и методы, находящие важные физические приложения.

В качестве моделей, служащих для иллюстрации общих закономерностей, подробно рассмотрены теория многомерных спиноров, алгебраическая модель квантованных волновых полей и инвариантно-групповая теория нерелятивистского кулоновского и ньютоновского взаимодействий. Книга может служить введением в быстро развивающуюся область науки, лежащую на грани между общей алгеброй и теоретической физикой и получившую название алгебраической физики.

Формат документа: pdf, djvu
Год публикации: 1974
Кол-во страниц: 191 страница
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Дифференциальные уравнения с частными производными - 2 (серия "Современные проблемы математики", том 31)

Эта статья содержит попытку авторов дать эскиз некоторых идей и методов современной теории линейных дифференциальных уравнений с частными производными.

Она является естественным продолжением содержащейся в предыдущем томе статьи авторов 21, где излагались классические вопросы, и посвящена в основном тем аспектам теории, которые связаны с возникшим в 60-е годы направлением, позже названным микролокальным анализом и включающим в себя теорию и приложения псевдодифференциальных операторов и интегральных операторов Фурье, а также использование языка волновых фронтов обобщённых функций. При этом по необходимости затрагивается и ряд важных вопросов, относящихся к теории, предшествовавшей возникновению микролокального анализа, а иногда и вполне классических. Авторы ни в коей мере не претендуют на полноту.

Эта статья является лишь вводной к серии более детальных статей различных авторов, которые публикуются в этом и последующих томах и будут содержать развернутое изложение большинства затронутых здесь вопросов.

Формат документа: pdf, djvu
Год публикации: 1988
Кол-во страниц: 137 страниц
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Уравнения с частными производными 2-го порядка с двумя независимыми переменными

Уравнения с частными производными 2-го порядка впервые появляются в анализе по поводу одной задачи физики. Задавшись целью определять форму колеблющейся струны, d’Alembert пришел к уравнению ∂²y/∂x² = ∂²y/∂t², которое отличается от обычного уравнения, известного в настоящее время под названием уравнения звучащей струны ∂²y/∂t² = a² ∂²y/∂x² лишь отсутствием множителя a². Интеграл полученного им уравнения d’Alembert дает в вид.

Формат документа: pdf, djvu
Год публикации: 1899
Кол-во страниц: 208 страниц
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Численные методы анализа

В книге излагаются избранные вопросы вычислительной математики, и по содержанию она является продолжением учебного пособия Б. П. Демидовича и И. А. Марона «Основы вычислительной математики».

Настоящее, третье издание отличается от предыдущего более доходчивым изложением. Добавлены новые примеры.

Рассчитана на студентов технических, экономических и педагогических институтов. Может быть использована также инженерами, вычислителями и лицами, работающими в области прикладной математики.

Формат документа: pdf, djvu
Год публикации: 1967
Кол-во страниц: 333 страницы
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Геометрия 8 класс

Данное пособие относится к учебно-методическому комплекту А. В. Погорелова по геометрии для 7—9 классов. Пособие содержит самостоятельные работы, дифференцированные задания и дополнительные задачи по геометрии для VIII класса средней школы. Ко всем заданиям приводятся ответы, к большинству — указания к решению.

Формат документа: pdf
Год публикации: 2017
Кол-во страниц: 86 страниц
Доступ: Всем
Книга: Теория потенциала и ее применение к основным задачам математической физики

Настоящая книга является переводом книги Н. М. Гюнтера «La théorie du potentiel et ses applications aux problèmes fondamentaux de la physique mathématique», вышедшей в 1934 г. в Париже. Эта книга возникла из работ специального семинара по теории потенциала, который Н. М. Гюнтер проводил в начале двадцатых годов в Ленинградском университете.

Теория потенциала и связанные с ней вопросы математической физики уже с начала XIX века были в центре внимания математиков. Но до самого конца XIX века не было проведено строгого исследования свойств различных потенциалов, и тем самым имелся целый ряд необоснованных моментов при применении теории потенциала к предельным задачам математической физики. С другой стороны до конца XIX века не было сколько-нибудь отчетливых и глубоких результатов, касающихся свойств решений задач при приближении к границе.

Формат документа: pdf, djvu
Год публикации: 1953
Кол-во страниц: 415 страниц
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Интегрирование уравнений в частных производных первого порядка

Основанием этого курса служат лекции, читанные мною в Ленинградском университете в 1921/22 и 1928/29 годах, а также лекции, прочитанные мною там же небольшому кружку студентов весною 1931 года, на которых было изложено содержание последних трех глав почти в том виде, в каком они находятся в курсе.

Он отличается от имеющихся соответствующих полных курсов, например от курса Гурса «Leçons sur l’intégration des équations aux dérivées partielles du premier ordre», главным образом следующими особенностями:

  1. Теория полного интеграла Лагранжа с самого начала тесно связывается с теорией характеристических линий в случае одного уравнения и характеристических многообразий в случае системы. Вследствие этого изложение отдельных методов интегрирования приобретает общее основание, и кажущиеся при некоторых способах подхода к их изложению различия в них в значительной мере сглаживаются, примером чего могут служить §§ 118, 119 и 121.
Формат документа: pdf, djvu
Год публикации: 1934
Кол-во страниц: 181 страница
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Задача Коши для гиперболических уравнений

Публикуемые лекции известного шведского математика Л. Гординга посвящены задаче Коши для общего гиперболического уравнения произвольного порядка. В заключительном параграфе рассмотрены гиперболические системы первого порядка.

Используемые методы (рассмотрение левой части уравнения как оператора в том или ином функциональном пространстве) позволяют получить в указанной задаче весьма общие и законченные результаты.

Книга будет интересна для математиков — студентов, аспирантов и научных работников, — в первую очередь для тех, кто занимается дифференциальными уравнениями и функциональным анализом.

Формат документа: pdf, djvu
Год публикации: 1961
Кол-во страниц: 123 страницы
Загрузил(а): Арбатова Юлия
Доступ: Всем