SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Настоящая книга посвящена теме дихотомического деления применительно к геометрии и теории чисел. В работе описаны наиболее известные диадические алгоритмы, связанные с именами Фарея, Штерна, Броко и Минковского. Показана связь этих алгоритмов и порождаемых ими двоичных деревьев с классическим алгоритмом «последовательного вычитания» Евклида, а также с обратным к нему алгоритмом Никомаха. В монографии рассматривается структура группы унимодулярных матриц с точки зрения геометрии. Раскрыта связь строения этой группы с рациональными числами, рассматривается вопрос о действии модулярной группы на регулярном троичном дереве и приводится несколько вариантов построения этого дерева. В книге также изложена тема фрактальности множества рациональных чисел, введено понятие сложности рационального числа и описан метод для ее расчета. Показана связь этих понятий с последовательностью чисел Фибоначчи, золотой пропорцией и явлением филотаксиса. Монография содержит философские и исторические отступления, связанные с историей разработки диадических алгоритмов. Книга рассчитана на широкий круг читателей, интересующихся математикой, ее историей и философией.
Настоящая книга посвящена использованию p-адической математики и дискретных вейвлетов Хаара для описания и конструирования сложных геометрических форм, включая формы биологических объектов. В монографии содержится вводный курс p-адической арифметики и теории p-адического интегрирования, а также подробное изложение теории вейвлетов Хаара на различных абелевых группах, включая конечные абелевы группы, группу двоично рациональных правильных дробей, а также аддитивные группы кольца и поля p-адических чисел. В книге сделан акцент на содержательной, а не на формальной стороне изложения, в частности описаны несколько содержательных интерпретаций вейвлетов Хаара и показана связь вейвлетов Хаара с процессами p-адической диффузии и формообразования. В работе вводится понятие 2-адических гештальтов, а также обсуждается вопрос создания сложных многомерных форм путем интерпретации таких гештальтов с помощью нейронных сетей. Книга рассчитана на студентов и аспирантов математических специальностей.
В этой книге рассказывается об истории возникновения , свойствах и применении различных систем счисления .
Настоящая книга посвящена использованию p-адической математики и дискретных вейвлетов Хаара для описания и конструирования сложных геометрических форм, включая формы биологических объектов. В монографии содержится вводный курс p-адической арифметики и теории p-адического интегрирования, а также подробное изложение теории вейвлетов Хаара на различных абелевых группах, включая конечные абелевы группы, группу двоично рациональных правильных дробей, а также аддитивные группы кольца и поля p-адических чисел. В книге сделан акцент на содержательной, а не на формальной стороне изложения, в частности описаны несколько содержательных интерпретаций вейвлетов Хаара и показана связь вейвлетов Хаара с процессами p-адической диффузии и формообразования. В работе вводится понятие 2-адических гештальтов, а также обсуждается вопрос создания сложных многомерных форм путем интерпретации таких гештальтов с помощью нейронных сетей. Книга рассчитана на студентов и аспирантов математических специальностей.
В брошюре рассказывается об истории возникновения, свойствах и применении различных систем счисления: десятичной, двоичной и некоторых других. В связи с двоичной системой счисления даются элементарные сведения о вычислительных машинах.
В брошюре систематически и с общей точки зрения описываются признаки делимости. Это дает автору повод популярно изложить некоторые вопросы элементарной теории чисел, теории отношений и теории алгорифмов.
Книга известного норвежского математика О. Оре раскрывает красоту математики на примере одного из ее старейших разделов ? теории чисел. Изложение основ теории чисел в книге во многом нетрадиционно. Наряду с теорией сравнений, сведениями о системах счисления, в ней содержатся рассказы о магических квадратах, о решении арифметических ребусов и т. д. Большим достоинством книги является то, что автор при каждом удобном случае указывает на возможности практического применения изложенных результатов, а также знакомит читателя с современным состоянием теории чисел и задачами, еще не получившими окончательного решения.
Содержание
В брошюре рассказывается о методах вычисления центров тяжести различных геометрических фигур: треугольников, многоугольников, тетраэдров и др.
Для широкого круга читателей, интересующихся математикой: школьников старших классов, студентов, учителей.
В книге рассказывается о любопытной связи задачи о сложении
чисел в двоичной записи с алгеброй логики, многочленами Жегалкина, треугольником Паскаля, салфеткой Серпинского и теоремой Куммера о делимости биномиальных коэффициентов. Все необходимое для понимания разъясняется. Брошюра является расширенным вариантом лекции, прочитанной на Малом мехмате в МГУ им. Ломоносова 6 апреля 2013 г.