SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Классическая (шенноновская) теория информации измеряет количество информации, заключённой в случайных величинах. В середине 1960-х годов А. Н. Колмогоров (и другие авторы) предложили измерять количество информации в конечных объектах с помощью теории алгоритмов, определив сложность
объекта как минимальную длину программы, порождающей этот объект. Это определение послужило основой для алгоритмической теории информации, а также для алгоритмической теории вероятностей: объект считается случайным, если его сложность близка к максимальной.
Предлагаемая книга содержит подробное изложение основных понятий алгоритмической теории информации и теории вероятностей, а также наиболее важных работ, выполненных в рамках «колмогоровского семинара по сложности определений и сложности вычислений», основанного А. Н. Колмогоровым в
начале 1980-х годов.
Книга рассчитана на студентов и аспирантов математических факультетов и факультетов теоретической информатики
В 70-х годах XIX века немецкий математик Г. Кантор создал
новую область математики — теорию бесконечных множеств. Через несколько десятилетий почти вся математика была перестроена на теоретико-множественной основе. Понятия теории множеств отражают наиболее общие свойства математических объектов.
Обычно теорию множеств излагают в учебниках для университетов. В настоящей книге в популярной форме описываются основные понятия и результаты теории множеств.
Книга предназначена для учащихся старших классов средней
школы, интересующихся математикой, а также для широких кругов читателей, желающих узнать, что такое теория множеств.
Книга является введением в современные разделы общей топологии. Первые три главы представляют собой изложение фактов теории множеств с так называемой «наивной» точки зрения. В главах 46 дается изложение основных топологических фактов, касающихся метрических и топологических пространств. Особое внимание при этом обращается на метризационные теоремы и понятия компактности (бикомпактности) и паракомпактности.
Учебное пособие предназначено для студентов и аспирантов физико-математических факультетов университетов.