SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
This report describes results of a field study conducted to assess the utility of using polarization-augmented thermal vision to enhance autonomous vehicle operation. In particular, polarimetric and conventional long-wave infrared (LWIR) video was recorded for a variety of nighttime driving scenarios conducted in both rural and urban environments. An uncooled microbolometer-based LWIR polarimetric camera sensor capable of recording simultaneous conventional thermal and polarimetric video imagery was used. Results showed improved spatial detail and information content for polarization-augmented thermal imagery when compared to conventional thermal only
We present a polarimetric thermal face database, the
first of its kind, for face recognition research. This
database was acquired using a polarimetric longwave
infrared imager, specifically a division-of-time spinning
achromatic retarder system. A corresponding set of visible
spectrum imagery was also collected, to facilitate cross-
spectrum (also referred to as heterogeneous) face
recognition research. The database consists of imagery
acquired at three distances under two experimental
conditions: neutral/baseline condition, and expressions condition. Annotations (spatial coordinates of key fiducial points) are provided for all images. Cross-spectrum face recognition performance on the database is benchmarked using three techniques: partial least squares, deep perceptual mapping, and coupled neural networks
Infrared polarimetry is an emerging sensing modality that offers the potential for significantly enhanced contrast in
situations where conventional thermal imaging falls short. Polarimetric imagery leverages the different polarization
signatures that result from material differences, surface roughness quality, and geometry that are frequently different from
those features that lead to thermal signatures. Imaging of the polarization in a scene can lead to enhanced understanding,
particularly when materials in a scene are at thermal equilibrium. Polaris Sensor Technologies has measured the
polarization signatures of oil on water in a number of different scenarios and has shown significant improvement in
detection through the contrast improvement offered by polarimetry. The sensing improvement offers the promise of
automated detection of oil spills and leaks for routine monitoring and accidents with the added benefit of being able to
continue monitoring at night. In this paper, we describe the instrumentation, and the results of several measurement
exercises in both controlled and uncontrolled conditions
В работе представлено решение задачи рассеяния света на хаотически ориентированных частицах
неправильной формы для частиц размерами 100, 140, 170 и 200 мкм для длины волны 0,532 мкм для различных
показателей преломления. Решение строилось как в рамках физической оптики (для направления рассеяния строго
назад), так и геометрической оптики (для углов рассеяния в диапазоне от 0 до 180 градусов). Полученные решения
позволили построить диаграмму зависимости геометрического альбедо частицы от максимальной степени
поляризации для проверки эффекта Умова. Установлено, что при мнимой части показателя преломления меньше
0,001 эффект Умова выполняется с хорошей точностью. Однако, для случая, когда мнимая часть показателя
преломления больше 0,001 и в решении начинает доминировать зеркальная компонента рассеянного излучения,
эффект Умова нарушается
It is well known that vanadium oxide can take many different forms. However for this
study, only the amorphous phase was investigated. Amorphous vanadium oxide (VOx ) thin films
were deposited on thermally grown silicon dioxide by DC magnetron sputtering using a
vanadium metal target in an argon / oxygen atmosphere. The driving force of this study was to
investigate the temperature coefficient of resistance (TCR) and low resistivity in the amorphous
films. Sheet resistance is very sensitive to small changes in temperature, making amorphous VOx
very attractive to thermal sensor applications such as infrared detectors.
To form the vanadium oxide, physical vapor deposition of vanadium metal at 200 Watts
of DC power was used with varied amounts of oxygen in a primary argon atmosphere. During
deposition, the concentration of oxygen was controlled by using a 20:80 mixture of O2 and Ar in
conjunction with high purity Ar supply. Flow control techniques were derived and calculated to
predict the percentage of oxygen before and during deposition to understand the reaction
between the vanadium metal and oxygen. Concentrations of O2 in the deposition chamber were
varied from 0.025% to 3.000% with the purpose of gaining an understanding of the affects of O2
concentration in amorphous VOx films. TCR and resistivity measurements were performed to
characterize the films. The results showed a resistivity decrement with decreasing oxygen
concentration. The films with lower concentrations of oxygen were found to have better TCR
values then those with higher percentages of oxygen
To further reduce the resistivity of the VOx and maintain the TCR value, co-sputtering of
noble metals (gold and platinum) with VOx was studied. The metals were co-sputtered at various
power settings with the vanadium oxide reactive process at a fixed percentage of oxygen. The TCR and resistivity results showed that the additions of Au and Pt into VOx reduced the
resistivity. However, only Au was found to improve TCR value.
The results
Дальневосточные ученые разработали новый метод диагностики состояния периферических сосудов по реакции кожи пациента на тепловое воздействие. С помощью нагрева ученые активизируют кровообращение в исследуемом участке кожи руки, записывают его видеоизображение в зеленом свете вместе с электрокардиограммой, и, анализируя полученные данные, оценивают тонус кровеносных сосудов. Этот метод прост в применении, не требует забора тканей для проведения анализа, но при этом достоверно отражает состояние сосудов человека. Авторами метода стали ученые подведомственного Минобрнауки России Института автоматики и процессов управления (ИАПУ) ДВО РАН.