SCI Библиотека

SciNetwork библиотека — это централизованное хранилище... ещё…

Результаты поиска: 213 док. (сбросить фильтры)
Статья: МЕТОДЫ ИНТЕЛЛЕКТУАЛЬНОЙ ОБРАБОТКИ ДАННЫХ ДЛЯ ИССЛЕДОВАНИЯ ВЛИЯНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ НА ЗАБОЛЕВАЕМОСТЬ НАСЕЛЕНИЯ В МОСКВЕ

Цель исследования. Цель исследования состоит в том, чтобы подтвердить или опровергнуть экологическую детерминированность возникновения социально значимых заболеваний у населения Москве на основе анализа данных по экологическим и здравоохранительным показателям в разрезе муниципальных единиц города. Материалы и методы. В статье проведен анализ российской и зарубежной библиографии по проблеме исследования. На основе собранных и обработанных открытых данных по экологическим показателям и по заболеваемости населения в различных районах Москвы были проведены различные виды анализа для выявления взаимосвязи между этими данными. Для классификации социально значимых заболеваний на основе экологических показателей места проживания были построены модели машинного обучения. Математическую основу методов машинного обучения составляют метод k-ближайших соседей, многослойный перцептрон, градиентный бустинг. Для построения моделей использован программный инструмент Jupyter Notebook, поддерживающий язык программирования Python. Результаты. Корреляционно-регрессионный анализ показал, что между некоторыми выбранными экологическими показателями и возникновением социально значимых заболеваний существует статистически значимая корреляция. Данный результат говорит о возможной взаимосвязи, что является одним из главных выводов данной работы. Разработан веб-интерфейс для автоматизации анализа новых данных с помощью построенных моделей машинного обучения, использованных при проведении регрессионного анализа для построения бинарной логистической модели (предсказание на основе собранных данных людей с социально значимыми заболеваниями) и модели мультиклассовой классификации (предсказание на основе собранных данных, какая именно болезнь может быть выявлена у человека). Проведен анализ используемых моделей машинного обучения, определена наилучшая модель для классификации социально значимых заболеваний. Заключение. В результате проведенного исследования удалось собрать полноценную информацию о различных экологических показателях и наличии или отсутствии различных объектов, оказывающих воздействие на окружающую среду. Эти данные были использованы не только в моделях машинного обучения, но и для формирования объективной оценки экологической обстановки муниципальных единиц города Москвы. Поскольку было реализовано автоматическое обновление рейтинга для динамических данных данный результат может быть использован обычными пользователями, не имеющих достаточных квалификаций в экологии и медицине для самостоятельного анализа экологического состояния районов. Считаем, что такие исследования наверняка приведут к эффективным практическим решениям в данной области.

Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 1
Загрузил(а): Золотова Татьяна
Язык(и): Русский
Доступ: Всем
Статья: ПРОГНОЗИРОВАНИЕ ДИНАМИЧЕСКОГО ЭНЕРГОПОТРЕБЛЕНИЯ ЗА СЧЕТ ПЕРЕКЛЮЧЕНИЙ НА ЭТАПЕ ПЛАНИРОВКИ ФИЗИЧЕСКОГО ПРОЕКТИРОВАНИЯ ИС С ИСПОЛЬЗОВАНИЕМ МАШИННОГО ОБУЧЕНИЯ

В данной работе разбирается применение алгоритмов машинного обучения для прогнозирования мощности рассеивания энергии за счет переключений компонентов схем на начальном этапе физического проектирования интегральных схем (ИС) для конкретной архитектуры. Реалистичная оценка потребляемой мощности возможна на заключительных этапах маршрута проектирования ИС, что может создать дополнительную итеративность в маршруте для оптимизации энергопотребления. Предложенный метод позволяет довольно точно спрогнозировать конечное значение рассматриваемого вида энергопотребления с высокой точностью для различных типов стандартных ячеек при различных сценариях и конфигурациях планировки. Недостатком метода является необходимость прохождения полного маршрута проектирования выбранной схемы с выбранным диапазоном параметров для сбора данных, нужных для обучения моделей машинного обучения, что требует дополнительных машинных и временных ресурсов.

Формат документа: pdf
Год публикации: 2022
Кол-во страниц: 1
Язык(и): Русский
Доступ: Всем
Статья: ПРОГНОЗИРОВАНИЕ ТРАНСПОРТНОЙ ЗАГРУЖЕННОСТИ С ИСПОЛЬЗОВАНИЕМ МЕТОДОВ МАШИННОГО ОБУЧЕНИЯ

В статье разрабатывается комплексный подход к прогнозированию транспортной загруженности с использованием синтетических данных, имитирующих динамику городского трафика. Гибридная методология позволяет объединить анализ временных рядов и глубокое обучение, что актуально для моделирования нелинейных зависимостей и закономерностей в транспортных данных.

Цель. Целью работы является разработка и тестирование прогностической модели, способной точно предсказывать уровни транспортной загруженности с учётом сезонных и погодных факторов.

Материалы и методы. Для выявления паттернов в данных применено аддитивное разложение временного ряда, спектральный анализ на основе быстрого преобразования Фурье и оценка автокорреляционных зависимостей. Прогностическая модель реализована в виде двухэтапного подхода: классический алгоритм ARIMA используется для базового прогнозирования, а архитектура LSTM с двумя рекуррентными слоями и регуляризацией – для обучения на последовательностях длиной 24 часа. Дополнительно для сопоставления и подтверждения результатов применён ансамблевый метод Random Forest, настроенный с гиперпараметрами: 200 деревьев, максимальная глубина – 12, минимальное количество объектов в листе – 2.

Результаты. Результаты демонстрируют превосходство LSTM-модели над ARIMA и Random Forest по точности предсказаний, что подтверждается визуальным сопоставлением прогнозов с тестовыми данными и метрикой среднеквадратичной ошибки. Выявлены ключевые факторы, влияющие на загруженность: суточные циклы интенсивности трафика, рост нагрузки при осадках (до 30% при снеге и 20% при дожде), а также температурно-зависимая модуляция транспортного потока.

Формат документа: pdf
Год публикации: 2025
Кол-во страниц: 1
Загрузил(а): Загидуллин Рамиль
Язык(и): Русский, Английский
Доступ: Всем
Статья: ФУНКЦИОНАЛЬНАЯ ВЕРИФИКАЦИЯ МИКРОПРОЦЕССОРОВ С ПРИМЕНЕНИЕМ МЕТОДОВ МАШИННОГО ОБУЧЕНИЯ

Применимость методов машинного обучения для тестирования моделей процессора в настоящее время исследуется в крупнейших иностранных технологических компаниях (исследовательские центры ARM, Intel, IBM и другие) и институтах. Однако исследования проводятся только с точки зрения машинного обучения в области формальной верификации, генерации тестов с использованием символического выполнения и решения ограничений, а также для поиска нерегулярных ошибок в уже изготовленном кристалле СБИС микропроцессора. Новизна предлагаемого решения в применении машинного обучения для имитации поведения приложений пользователя с целью повышения качества тестирования RTL-модели микропроцессора направленными псевдослучайными методами генерации тестов. В рамках данной работы планируется показать применимость инструментов машинного обучения для функциональной верификации RTL-модели микропроцессора на системном уровне. Основным результатом проведенного исследования является возможность имитировать поведение набора пользовательских приложений на уровне машинного кода, а также автоматизация процесса анализа труднодостижимых в рамках классического маршрута верификации ситуаций с целью повышения тестового покрытия.

Формат документа: pdf
Год публикации: 2022
Кол-во страниц: 1
Загрузил(а): Гревцев Никита
Язык(и): Русский
Доступ: Всем
Статья: ИСПОЛЬЗОВАНИЕ МАШИННОГО ОБУЧЕНИЯ КАК ИНСТРУМЕНТ ЦИФРОВИЗАЦИИ ЭКОНОМИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ КОМПАНИЙ-РИТЕЙЛЕРОВ

В статье описывается использование машинного обучения, как инструмент цифровизации экономической деятельности компаний - игроков рынка розничной торговли Российской Федерации. В настоящее время машинное обучение является одним из основных инструментов цифровизации современной российской экономики, но в связи со спецификой рынка розничной торговли и отсутствием подобного опыта, очень малое количество организаций внедряют этот инструмент в свою деятельность. В статье предлагается комплекс показателей, помогающий оценить эффективность и результативность бизнес - процессов, до и после внедрения моделей машинного обучения, расчет которых является для каждого ритейлера уникальным. Особое внимание уделено алгоритмам машинного обучения, применяемым к деятельности компаний ритейлеров для улучшения двух основных процессов их деятельности, а именно процессу ценообразования и процессу выбора поставщика. Автором предлагается алгоритм внедрения моделей машинного обучения, который уже прошёл апробацию в двух крупных организациях и находится в постоянном использовании. Данный алгоритм является базовым алгоритмом перехода ритейлера к использованию машинного обучения, при этом компания должна сама определять обучающие признаки в соответствии со спецификой своей экономической деятельности.

Формат документа: pdf
Год публикации: 2023
Кол-во страниц: 1
Загрузил(а): Прейс Вячеслав
Язык(и): Русский
Доступ: Всем
Статья: Сбор и анализ датасета для задачи автоматической генерации сообщений коммитов

Цели. Для управления процессом разработки современного программного обеспечения нередко применяются системы контроля версий, которые позволяют фиксировать изменения в программном коде и передавать контекст этих изменений при помощи сообщений коммитов. Релевантное и качественное описание внесенных изменений при помощи таких сообщений требует от разработчика высокой компетенции и времени, но современные методы машинного обучения позволяют решать эту задачу автоматически. Целью работы является статистический и сравнительный анализ собранной выборки данных с наборами изменений в программном коде и их описаниями на естественном языке.

Методы. В исследовании использован комплексный подход, включающий сбор данных с популярных репозиториев на GitHub, предварительную обработку и фильтрацию данных, а также статистический анализ и метод обработки естественного языка (векторизация текста). Для оценки семантической близости между первым предложением и полным текстом сообщений коммитов было использовано косинусное сходство.

Результаты. Проведено исследование структуры и качества сообщений коммитов, включающее сбор данных из репозиториев GitHub и их предварительную очистку. Осуществлена векторизация текста сообщений коммитов и оценка семантической близости между первыми предложениями и полными текстами сообщений с использованием косинусного сходства. Выполнен сравнительный анализ качества сообщений в собранном датасете и в нескольких аналогичных наборах данных с помощью классификации при помощи модели CodeBERT.

Выводы. Проведенный анализ выявил низкий уровень косинусного сходства между первыми предложениями и полными текстами сообщений коммитов (0.0969), что свидетельствует о слабой семантической связи между ними и опровергает гипотезу о том, что первые предложения выступают в качестве обобщения содержания сообщений. Процентная доля пустых сообщений в собранном наборе данных составила лишь 0.0007%, что существенно ниже ожидаемого значения и указывает на высокое качество собранных данных. Классификационный анализ показал, что доля сообщений, отнесенных к категории «плохих», в собранном датасете составляет 16.82%, что значительно ниже аналогичных показателей в других сопоставимых наборах данных, где этот процент варьируется от 34.75% до 54.26%. Данный факт подчеркивает высокое качество собранного набора данных и его адекватность для дальнейшего применения в системах автоматической генерации сообщений коммитов.

Формат документа: pdf
Год публикации: 2025
Кол-во страниц: 1
Загрузил(а): Косьяненко Иван
Язык(и): Русский, Английский
Доступ: Всем
Статья: ИСПОЛЬЗОВАНИЕ ГЕНЕРАТИВНОГО ИСКУССТВЕННОГО ИНТЕЛЛЕКТА ДЛЯ СОЦИОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ

Введение. В статье рассматривается использование генеративного искусственного интеллекта (ГИИ) в социологических исследованиях. Актуальность темы определяется возрастанием интереса к применению новых технологий для повышения эффективности и точности исследований в области социальных наук. ГИИ предоставляет новые возможности для сбора, обработки и анализа данных, что может существенно изменить традиционные подходы в социологии. Методология и источники. Исследование базируется на анализе доступных публикаций и экспериментальных данных, полученных в ходе общения с социологами, использующими ГИИ в своих проектах. В работе рассматриваются методики генерации описаний, анализа изображений и генерации синтетических изображений с использованием алгоритмов машинного обучения. Акцент сделан на конкретных случаях применения ГИИ в социологических исследованиях, а также на примерах успешных проектов. Результаты и обсуждение. Результаты исследования показывают, что использование ГИИ позволяет значительно ускорить процесс обработки данных и повысить их качество. Выявлены новые паттерны и тенденции в социологических исследованиях, благодаря чему ученые могут получать более точные и обоснованные выводы. Об суждаются также этические аспекты, связанные с использованием ГИИ, такие как во просы конфиденциальности и алгоритмической предвзятости. Заключение. Генеративный искусственный интеллект представляет собой мощный инструмент, способный трансформировать социологические исследования. Несмотря на существующие вызовы, он открывает новые горизонты для сбора и анализа дан ных, способствуя более глубокому пониманию социальных процессов и явлений. Важно продолжать исследовать возможности и ограничения ГИИ для развития социо логической науки.

Формат документа: pdf
Год публикации: 2025
Кол-во страниц: 1
Загрузил(а): Драч Владимир
Язык(и): Русский, Английский
Доступ: Всем
Статья: Искусственный интеллект: стратегии и методы решения сложных проблем

Цель – конкретизировать понятия «искусственный интеллект» и «сложная проблема», а также рассмотреть современное состояние работ в области применения искусственного интеллекта к решению сложных проблем.

Методы. Использованы методы контекстного поиска, системного анализа и обобщения информации.

Результаты. Сформулировано ключевое препятствие применения искусственного интеллекта к решению сложных проблем, заключающееся в отсутствии концептуального и технического решения по представлению междисциплинарных знаний в форме, доступной для обработки и синтеза методами искусственного интеллекта. Обучение ЭВМ на разных массивах данных, но без понимания процесса синтеза, с которым так легко справляется мозг человека, не позволяет искусственному интеллекту претендовать на открытие чего-то нового, принципиально неизвестного, без чего невозможно решение сложных проблем. Нужен универсальный язык, имитирующий процессы человеческого мышления.

Заключение. Выполненный анализ и рекомендации позволяют взглянуть на задачу применения искусственного интеллекта к решению сложных проблем с отличной от принятой в настоящее время точки зрения, опирающейся на использование быстрых алгоритмов поиска (так называемые большие языковые модели). Создание языка-транслятора между различными областями знаний должно способствовать междисциплинарному обмену, развитию творческого мышления, появлению новых идей и генерации инновационных решений в самых разных областях деятельности человека. Развитый язык позволит решать сложные задачи, объединяя различные дисциплины.

Формат документа: pdf
Год публикации: 2025
Кол-во страниц: 1
Загрузил(а): Бочкова Александра
Язык(и): Русский
Доступ: Всем
Статья: СОСТОЯНИЕ И ТЕНДЕНЦИИ РАЗВИТИЯ ГЕОГРАФИЧЕСКИХ ИНФОРМАЦИОННЫХ СИСТЕМ

Поддержка принятия решений при управлении сложными организационными и техническими системами сохраняет свою актуальность в связи с растущей ролью и возможностями географических информационных систем, которые и являются объектом настоящего исследования. Анализируется уровень их представления в мировой и российской среде, особенности их развития, а также основные научные результаты, полученные в Институте проблем управления им. В. А. Трапезникова РАН. Выделены самые востребованные в сфере хозяйствования технологии и функциональные возможности геоинформационных систем. Геоинформационная система рассмотрена как инструмент обработки и поддержки принятия управленческих решений. Исследованы основные зарубежные и российские геоинформационные системы, основные их характеристики, области применения, тенденции и перспективы развития. Приведены описания геоинформационных технологий и алгоритмов, реализованных в полнофункциональных геоинформационных системах и рассматриваемых как платформы для создания геоинформационных систем различного назначения.

Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 1
Загрузил(а): Алчинов Александр
Язык(и): Русский
Доступ: Всем
Статья: ИССЛЕДОВАНИЕ МНОГОФАЗНЫХ СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ С ПОМОЩЬЮ МЕТОДОВ МАШИННОГО ОБУЧЕНИЯ

Рассматривается многофазная система массового обслуживания с входящим коррелированным МАР-потоком, РН-распределением времени обслуживания и ограниченным размером буфера на фазах системы. Приведен краткий исторический обзор по анализу моделей таких систем и методов их исследования. На основании проведенного обзора обоснована новизна постановки задачи, рассматриваемой в статье, методов ее решения и результатов. Дано описание алгоритма точного расчета характеристик производительности многофазных систем малой размерности и оценки сложности этого алгоритма. Для исследования многофазных систем большой размерности предложен подход, основанный на комбинации методов имитационного моделирования и машинного обучения. Приведены результаты численного анализа, подтвердившие эффективность применения методов машинного обучения для оценки характеристик производительности тандемных систем, адекватно описывающих функционирование широкополосных беспроводных сетей.

Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 1
Язык(и): Русский
Доступ: Всем