SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Представлены методические материалы для проведения занятий по
геометрии по разделу «Сечения геометрических тел» с использованием
программы GeoGebra. Включает как готовые материалы для проведения за-
нятий, так и фрагменты конспектов уроков для их использования в процес-
се обучения.
Для учителей математики, школьников 10–11 классов и студентов
уровня СПО, а также будет полезно студентам, обучающимся по направле-
ниям подготовки: 44.03.01 Педагогическое образование, 44.03.05 Педагоги-
ческое образование (с двумя профилями подготовки), профили «Математи-
ка» и «Информатика»
Учебное пособие посвящено одному из важнейших
разделов общеобразовательного курса математики – триго-
нометрии. Пособие включает в себя первичные понятия
тригонометрии, основные формулы тригонометрии с дока-
зательствами, все свойства тригонометрических функций,
методы решений тригонометрических уравнений и нера-
венств. Теоретический материал сопровождается множе-
ством примеров и упражнений.
Предназначено для аудиторной работы и самостоятель-
ного изучения студентами СПО
Теорема о неподвижной точке есть утверждение о том, что некоторое уравнение (или система уравнений) имеет решение. Доказываются топологические теоремы о неподвижных точках непрерывных отображений отрезка, квадрата, окружности и сферы. В доказательствах используются различные формы комбинаторно-геометрической леммы Шпернера и понятие степени отображения.
Для школьников старших классов и студентов младших курсов вузов.
Брошюра посвящена описанию и исследованию геометрических построений с помощью одного лишь циркуля; написана она на основе лекций, которые автор в течение ряда лет читал для школьников, принимавших участие в математических олимпиадах в г. Львове. Книжка представляет интерес для преподавателей математики и учащихся старших классов средней школы.
Великий древнегреческий мыслитель Архимед открыл оригинальный способ доказательства геометрических теорем, основанный на рассмотрении центра масс системы материальных точек. Имнно таким способом им впервые была доказана теорема о пересечении медиан треугольника. Метод Архимеда был развит выдающимися математиками (Лагранж, Якоби, Мёбиус и др.) и превратился в эффективное и строго обоснованное средство геометрического исследования. На примере трех сотен задач в книге показаны возможности применения метода “геометрии масс”.
Для школьников и преподавателей
Сборник содержит 340 задач по стереометрии и состоит из двух разделов. В первом разделе помещены в основном задачи вычислительного характера. Сюда же включены в виде задач некоторые теоремы и факты стереометрии, непосредственно примыкающие к школьному курсу. Во втором разделе собраны различные геометрические факты, неравенства, задачи на геoмeтpические места точек, элементы геометрии тетраэдра и сферической геометрии. Они могут быть использованы во внеклассной работе, при подготовке к математическим олимпиадам.
Для школьников, преподавателей, студентов.
Книга включает около 500 задач по планиметрии, разбитых на два раздела. В первом разделе 140 сравнительно простых задач, которые сопровождаются ответами и могут бьть использованы как в классной, так и во внеклассной работе в школе. Второй раздел включает около 300 задач, собранных по тематике: задачи на вычисление, задачи на доказательство и т. д., а также 62 дополнительные задачи. Задачи этого раздела сопровождаются указаниями и подробными решениями. Они могут быть использованы во внеклассной работе, в работе школьных математических кружков при подготовке к математическим олимпиадам.
Для школьников, преподавателей, студентов.
Текст брошюры подготовлен по материалам лекции, прочитанной автором 21 февраля 2004 года на Малом мехмате МГУ для школьников 9—11 классов.
Читатель познакомится с такими классическими задачами на максимум и минимум, как задача Фаньяно, задача о построении фигуры максимальной площади заданного периметра, задача Штейнера о кратчайшей системе дорог и многими другими. Одна из глав посвящена коническим сечениям и их фокальным свойствам. В брошюре излагаются решения перечисленных выше задач, особое внимание уделено проблеме доказательства существования решения в экстремальных задачах.
В конце каждого раздела помещён набор задач для самостоятельного решения.
Брошюра рассчитана на широкий круг читателей, интересующихся математикой: школьников старших классов, студентов младших курсов, а также школьных учителей, руководителей математических кружков. При чтении последних разделов будет полезным (но не обязательным) знакомство с началами математического анализа.
Эта книга, написанная группой авторов под руководством одного из крупнейших математиков 20 века академика И. М. Гельфанда, призвана опровергнуть расхожее мнение о тригонометрии как скучном и непонятном разделе школьного курса математики. Читателю предлагается взглянуть на знакомый предмет по-новому. Изложение, сопровождающееся большим количеством задач, начинается «с нуля» и доходит до материала, выходящего довольно далеко за рамки школьной программы; тригонометрические формулы иллюстрируются примерами из физики и геометрии.
Отдельная глава посвящена типичным приемам решения тригонометрических задач, предлагаемых на вступительных экзаменах в высшие учебные заведения.
Книга будет незаменимым помощником для школьников старших классов, преподавателей, родителей и всех, интересующихся математикой.
Сборник задач по геометрии рассчитан на школьников средних и старших классов, а также преподавателей и любителей математики. Он содержит более 750 задач, по большей части снабжённых решениями, а также задачи для самостоятельного
решения (многие | с указаниями). Каждый раздел предваряется кратким перечнем сведений, нужных для понимания и решения задач. Необходимые чертежи (более 450) вынесены на поля.
Прорешав задачи сборника, читатель познакомится с основными фактами и методами школьного курса планиметрии и (мы надеемся) получит удовольствие.
Предыдущее издание книги вышло в 2015 г