SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Сборник избранных статей о школьной математике и ее приложениях.
Включен большой и разнообразный материал о профессии математика, о фундаментальных понятиях школьной математики, о теории вероятностей, алгоритме Евклида, о решении 10-й проблемы Гильберта, о связи математики с другими науками и техникой и т.д.; приведен ряд интересных задач. Имеется также специальный раздел для учителей, в котором содержатся лекции по научным основам школьного курса математики.
Для школьников, учителей, студентов.
Прослеживается история методов нахождения наименьших и наибольших величин от глубокой древности до наших дней. Подробно излагаются решения многих замечательных задач на максимум и минимум, принадлежащие великим математикам прошлых эпох ? Евклиду, Архимеду, Герону, Тарталье, Ферма, Кеплеру, Бернулли, Ньютону и др. Говорится о зарождении многих идей, заложивших основания современного анализа. Объясняются связи экстремальных задач с проблемами естествознания, техники и экономики, рассказывается об основных принципах современной теории экстремальных задач и приводятся решения задач алгебры, геометрии, анализа.
Для школьников, учителей, студентов, преподавателей.
Многие спортивные ситуации целесообразно рассматривать, анализировать и оценивать с математических позиций. Некоторые из таких ситуаций, поддающиеся изучению методами прикладной математики, рассмотрены в настоящей книге. Изложение ведется на двух уровнях. На одном — в описательной форме приведены постановки задач и указаны методы их решения. На другом уровне построены математические модели поставленных задач, рассмотрен, с той или иной степенью подробности и строгости, необходимый математический аппарат, знакомство с которым можно продолжить по специальной литературе.
Для школьников, спортсменов, тренеров, преподавателей математики и физкультуры.
В книге математика, кандидата технических наук и мастера по шахматам Е.Я.Гика рассказывается о различных связях между шахматами и математикой. Рассматриваются многие типы математических задач и головоломок на шахматной доске: о силе фигур, об их маршрутах, расстановках и перестановках, о разрезании и покрытии доски. Описываются математические игры на шахматной доске, устанавливаются рекорды, сообщается о шахматных успехах ЭВМ. Дается математическое освещение таких шахматных аспектов, как составление турнирных расписаний, вычисление рейтингов шахматистов, геометрические свойства доски.
В книге собраны задачи, представляющие основной круг идей школьного курса алгебры и начал математического анализа, специальные разделы посвящены комбинаторике и комплексным числам.
Особенностью книги является группировка задач в серии: в каждой серии задачи связаны общей идеей решения и расположены в порядке возрастания трудности. Это расположение материала, а также указания к каждой серии, составляющие вторую часть книги, и вводные замечания к отдельным главам помогут читателю в самостоятельной работе и приобретении навыков математического мышления.
Для школьников, преподавателей, лиц, занимающихся самообразованием, студентов педагогических вузов.
Популярные книги замечательного польского математика Г.Штейнгауза хорошо знакомы советскому читателю. В них автор пытается показать, что математика пронизывает всю окружающую нас реальную жизнь. Для понимания книги достаточно тех знаний математики, которые дает средняя школа. Отдельные трудные места читатель без особого ущерба может опустить. Имеются вопросы, на которые автор не знает ответа, а есть и такие, на которые ответа не знает никто.
Книга содержит 200 занимательных задач логического характера. Для их решения обычно неважен уровень математического образования. Гораздо важнее сообразительность и смекалка, так как каждая из головоломок требует совершенно нового оригинального подхода. Книга особенно интересна тем, что автору удалось придумать несколько новых типов головоломок.
В книге рассказано о жизни и творчестве двенадцати замечательных математиков и физиков (от XVI до XX века), работы которых в значительной мере определили лицо современной математической науки.
Увлекательно изложенные биографии великих ученых заинтересуют самые широкие круги читателей, от старшеклассников до взрослых; интересующиеся математикой получат удовольствие и пользу от знакомства с научными достижениями героев книги.
Настоящее издание книги С. Г. Гиндикина более чем вдвое расширено по сравнению с предыдущим, вышедшим в серии «Библиотечка “Квант” » в 1985 году и успевшим стать библиографической редкостью.
Брошюра посвящена многомерному кубу и его свойствам. Рассказывается, как получить формулу для числа граней куба любой размерности и как распространить ее на другие правильные многогранники. Рассматриваются комбинаторные и топологические свойства многомерного куба, связанные с ним парадоксы, гипотеза Борсука; обсуждаются вопросы об объеме корки n-мерного кубического и шарового «арбуза» и электрическом сопротивлении n-мерного куба. В конце приведен список 25 задач, последние две из которых были сформулированы известнейшими математиками современности — И. М. Гельфандом и В. И. Арнольдом.
Брошюра рассчитана на широкий круг читателей: школьников старших классов, студентов, учителей.
В жизни «перестановками» называют самые разные вещи; эта книжка содержит начальные сведения о том, что математики называют «группой перестановок конечного множества». Мы покажем, как можно разделить перестановки на «чётные» и «нечётные» и как это помогает проанализировать известную головоломку c 15 фишками в квадрате 4×4, как перестановка разлагается в циклы и почему это бывает полезно, почему повторение одного и того же действия с «кубиком Рубика» рано или поздно вернёт его в исходное положение, и разберём задачи, при решении которых перестановки оказываются полезными. Обычно эти вопросы относят к курсам «высшей алгебры» для студентов младших курсов, но они вполне элементарны, и никаких сведений, выходящих за пределы средних классов школы, мы не используем. (Хотя, конечно, привычка к несложным математическим рассуждениям пригодится.