SCI Библиотека

SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…

Книга: АРИФМЕТИЧЕСКИЕ ЗАДАЧИ НА ЧАШЕЧНЫХ ВЕСАХ
ЗАКОНЫ АРИФМЕТИКИ, РАВНОПЛЕЧИЕ ВЕСЫ, НЕРАВНОПЛЕЧИЕ ВЕСЫ, ЗАКОН АРХИМЕДА, ПОДВЕСНОЙ БЛОК КАК СРЕДСТВО СОЗДАНИЯ "ОТРИЦАТЕЛЬНОГО ВЕСА", SUSPENSION BLOCK AS A MEANS OF CREATING A "NEGATIVE WEIGHT"

Пособие в основном состоит из арифметических задач, сфор-
мулированных в виде элементарных физических опытов с ча-
шечными весами. Адресовано школьным учителям, студентам
педвузов и родителям школьников.
Ключевые слова: законы арифметики, равноплечие весы, не-
равноплечие весы, закон Архимеда, подвесной блок как средст-
во создания «отрицательного веса».

Формат документа: pdf
Год публикации: 2023
Кол-во страниц: 77 страниц
Доступ: Всем
Книга: АРИФМЕТИЧЕСКИЕ ЗАДАЧИ НА ЧАШЕЧНЫХ ВЕСАХ
ЗАКОНЫ АРИФМЕТИКИ, РАВНОПЛЕЧИЕ ВЕСЫ, НЕРАВНОПЛЕЧИЕ ВЕСЫ, ЗАКОН АРХИМЕДА, ПОДВЕСНОЙ БЛОК КАК СРЕДСТВО СОЗДАНИЯ "ОТРИЦАТЕЛЬНОГО ВЕСА"

Пособие в основном состоит из арифметических задач, сфор-
мулированных в виде элементарных физических опытов с ча-
шечными весами. Адресовано школьным учителям, студентам
педвузов и родителям школьников

Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 101 страница
Доступ: Всем
Книга: АРИФМЕТИЧЕСКИЕ ЗАДАЧИ НА ЧАШЕЧНЫХ ВЕСАХ Четвертое издание, исправленное и дополненное
ЗАКОНЫ АРИФМЕТИКИ, РАВНОПЛЕЧИЕ ВЕСЫ, НЕРАВНОПЛЕЧИЕ ВЕСЫ, ЗАКОН АРХИМЕДА, ПОДВЕСНОЙ БЛОК КАК СРЕДСТВО СОЗДАНИЯ "ОТРИЦАТЕЛЬНОГО ВЕСА"

Пособие в основном состоит из арифметических задач, сформулированных в виде элементарных физических опытов с чашечными весами. Адресовано школьным учителям, студентам педвузов и родителям школьников.

Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 101 страница
Владелец: Афонин Сергей
Доступ: Всем
Книга: Треугольник Паскаля

Настоящая лекция доступна учащимся восьмилетней школы. В ней рассматривается одна важная числовая таблица (которая и называется треугольником Паскаля), полезная при решении ряда задач. Попутно с решением таких задач затрагивается вопрос, что означают слова “решить задачу”.

Формат документа: pdf
Год публикации: 1979
Кол-во страниц: 52 страницы
Владелец: Афонин Сергей
Доступ: Всем
Книга: Остроугольные треугольники Данцера-Грюнбаума
комбинаторика, вероятностный метод

В 1962 г. геометры Людвиг Данцер и Бранко Грюнбаум предложили выяснить, насколько много точек может содержать такое множество точек в n-мерном пространстве, любые три точки которого образуют остроугольный треугольник. Несложно придумать такое множество из 2n − 1 точки. Авторы задачи думали, что лучшей конструкции не бывает. Гипотеза продержалась более двадцати лет, пока Пол Эрдёш и Золтан Фюреди с помощью весьма изящной комбинаторики её не опровергли. Оказалось, существует такое множество из [cn/2] точек, где c = 2/√3.

Брошюра посвящена изложению конструкции Эрдёша––Фюреди, основанной на применении вероятностных методов в комбинаторике. Текст представляет собой обработку записи лекции для школьников 9––11 классов, прочитанной автором 16 апреля 2005 года на Малом мехмате МГУ.

Для широкого круга читателей, интересующихся математикой: школьников старших классов, студентов младших курсов, учителей.

Формат документа: pdf
Год публикации: 2009
Кол-во страниц: 31 страница
Владелец: Афонин Сергей
Доступ: Всем
Книга: Инверсия

Инверсия — отображение плоскости на себя, которое может переводить окружности в прямые. С одной стороны, это помогает решать «школьные» геометрические задачи, особенно те, в которых речь идёт о многих пересекающихся или касающихся окружностях. В то же время знакомство с инверсией необходимо для дальнейшего изучения таких разделов математики, как комплексный анализ и геометрия Лобачевского.
После определения и вывода основных свойств инверсии в брошюре разбираются классические задачи Архимеда, Паппа, Аполлония. Рассказывается также об инверсии пространства, стереографической проекции сферы на плоскость, пучках окружностей и сфер, что приводит к доказательству знаменитой теоремы Понселе.

Материал брошюры рассчитан на старшеклассников, учителей математики и всех интересующихся элементарной геометрией.
Брошюра написана по мотивам лекции, прочитанной автором на
Малом мехмате 28 февраля 2004 года.

Формат документа: pdf
Год публикации: 2009
Кол-во страниц: 75 страниц
Владелец: Афонин Сергей
Доступ: Всем
Книга: Системы счисления и их применение
системы счисления, числовые расчеты

Различные системы счисления используются всегда, когда появ-
ляется потребность в числовых расчётах, начиная с вычислений младшеклассника, выполняемых карандашом на бумаге, кончая вычислениями, выполняемыми на суперкомпьютерах.
В книжке кратко изложены и занимательно описаны некоторые
из наиболее популярных систем счисления, история их возникновения, а также их применения, как старые, так и новые, как забавные, так и серьёзные.

Большая часть книги доступна школьникам 7—8 классов, но
и опытный читатель может найти в ней кое-что новое для себя.
Текст книжки написан на основе лекций, прочитанных автором
в школе им. А. Н. Колмогорова при МГУ и на Малом мехмате МГУ.

Рассчитана на широкий круг читателей, интересующихся математикой: школьников, учителей.

1-е изд. — 2004 год

Формат документа: pdf
Год публикации: 2012
Кол-во страниц: 68 страниц
Владелец: Афонин Сергей
Доступ: Всем
Книга: Цепные дроби
дроби, теория динамических систем, геометрия

Теория цепных дробей связана с теорией приближений вещественных чисел рациональными, с теорией динамических систем, а также со многими другими разделами математики. В брошюре рассказано о связи цепных дробей с геометрией выпуклых многоугольников. Из этой связи следует, например, что цепная дробь периодична в тех и только тех случаях, когда выражаемое ей число является корнем квадратного уравнения с целыми коэффициентами. Рассказано также о том, насколько часто среди элементов цепной дроби, выражающей произвольное вещественное число, встречается единица (двойка, тройка, …).

В заключительном разделе брошюры содержится обзор результатов, связанных с многомерными обобщениями классической теории цепных дробей, полученных в последнее время.

Текст брошюры представляет собой дополненную обработку записи лекции, прочитанной автором для школьников 9—11 классов 2 декабря 2000 года на Малом мехмате МГУ.

Брошюра рассчитана на широкий круг читателей, интересующихся математикой: школьников старших классов, студентов младших курсов, учителей, а отчасти она будет интересна и профессиональным математикам.

Первое издание книги вышло в 2001 году

Формат документа: pdf
Год публикации: 2009
Кол-во страниц: 42 страницы
Владелец: Афонин Сергей
Доступ: Всем