SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Пучки, расслоения и их инварианты - это фундаментальные понятия современной геометрии, позволяющие исследовать глобальные свойства многообразий.
Книга содержит основные определения и первые шаги этой теории. Подробно обсуждаются, в частности, когомологии со значениями в пучках и классы Черна расслоений.
Книга является записью курса лекций, которые автор неоднократно читал для студентов 2{4 курсов Независимого московского университета.
В книге собраны задачи Московских математических олимпиад 1993— 2005 г. с ответами, указаниями и подробными решениями. В дополнениях приведены основные факты, используемые в решении олимпиадных задач, и избранные задачи Московских математических олимпиад 1937—1992 г.
Все задачи в том или ином смысле нестандартные. Их решение требует смекалки, сообразительности, а иногда и многочасовых размышлений.
Книга предназначена для учителей математики, руководителей кружков, школьников старших классов, студентов педагогических специальностей. Книга будет интересна всем любителям красивых математических задач.
Геометрия треугольника справедливо считается одним изинтереснейших разделов элементарной геометрии.
В данной брошюре рассматриваются различные замечательные точки и прямые треугольника, а также некоторые преобразования плоскости, свзянные с треугольником. Брошюра содержит краткое введение в барицентрическое исчисление — один изосновных методов исследования свойств треугольника.
Текст брошюры подготовлен по материалам лекции, прочитанной автором 13 апреля 2002 года на Малом мехмате МГУ для школьников 9—11 классов.
Брошюра рассчитана на широкий круг читателей, интересующихся математикой: школьников старших классов, студентов младших курсов, учителей…
Брошюра издана по материалам лекций по криптографии, прочитанных на факультете мировой политики МГУ им. М. В. Ломоносова.
Основное внимание уделяется прикладным задачам, решаемым с помощью математических методов криптографии. Доступно рассказывается о том, что такое шифрование, криптографические протоколы, о роли криптографии в массовых информационных коммуникациях.
Первое издание было опубликовано в 2011 году.
В книге собраны задачи Московских математических олимпиад 1935— 1957 г. с ответами, указаниями и подробными решениями. В дополнениях приведены основные факты, используемые в решении олимпиадных задач.
Все задачи в том или ином смысле нестандартные. Их решение требует смекалки, сообразительности, а иногда и многочасовых размышлений.
Книга предназначена для учителей математики, руководителей кружков, школьников старших классов, студентов педагогических специальностей. Книга будет интересна всем любителям красивых математических задач.
Классическая двойственность Шура–Вейля приводит к эффективным способам построения инвариантных полиномов для простых алгебр Ли. Теория квантовых групп, возникшая в 1980-х гг., привнесла специальную матричную технику, с помощью которой удалось получить аналогичные конструкции новых семейств элементов Казимира для алгебр Ли классических серий. Операторы Сугавары — это аналоги элементов Казимира для аффинных алгебр Каца–Муди.
Цель книги состоит в описании алгебраических структур, связанных с аффинными алгебрами Ли, включая аффинные вертексные алгебры, янгианы и классические W-алгебры. Эти структуры проявляются во многих областях математики и математической физики, таких как теория модулярных форм, конформная теория поля, интегрируемые системы и солитонные уравнения. В книге развивается аффинная версия матричной техники, которая затем применяется для объяснения элегантных конструкций операторов Сугавары, появившихся за последнее десятилетие. Аффинный аналог изоморфизма Хариш-Чандры связывает операторы Сугавары с классическими W-алгебрами, играющими роль инвариантов группы Вейля в конечномерной теории.
Для студентов, аспирантов и научных сотрудников физико - математических специальностей.
Шестая книжка серии «Школьные математические кружки» посвящена различным подходам к сравнению и вычислению площадей и объёмов и предназначена для занятий со школьниками 6–11 классов.
В неё вошли разработки четырёх занятий математического кружка, в каждом из которых подробно разобраны задачи различной сложности и даны методические указания для учителя. Приведён также список дополнительных задач.
В приложении имеются различные варианты раздаточного материала. Брошюра адресована школьным учителям математики и руководителям математических кружков. Надеемся, что она будет интересна школьникам и их родителям, студентам педагогических вузов, а также всем любителям математики.
В книге Ю. И. Манина собраны написанные и опубликованные в разные годы очерки по истории и философии математики и физики, теории культуры и языка, а также впервые публикуемые отрывки из воспоминаний, стихи и стихотворные переводы.
Всякое одномерное семейство прямых на плоскости (кроме вырожденных случаев) является семейством касательных к некоторой кривой. В пространстве, однако, это уже совершенно не так; в брошюре объясняется, как, глядя на одномерное семейство прямых в пространстве, определить, является ли оно «касательным».
По ходу дела читатель знакомится с такими важными понятиями современной математики, как внешняя алгебра и грассмановы многообразия. Брошюра написана по материалам цикла лекций на Летней школе «Современная математика» в Дубне в 2003 г. Она доступна студентам младших курсов и школьникам старших классов.
В реплике из эпиграфа все неверно: LATEX не является текстовым редактором, работает отнюдь не только под операционной системой Linux (хотя и под ней тоже), наконец, его название произносится не «латекс», а «латех». Так что же такое LATEX? Если отвечать одной фразой, это издательская система на базе TEX’а.
Система компьютерной верстки TEX (произносится «тех») была создана выдающимся американским математиком и программистом Дональдом Кнутом в конце 70-х годов XX века; издательские системы на ее базе по сию пору широко используются и сдавать позиции не собираются. Чем объясняется столь редкое в компьютерном мире долголетие?