SCI Библиотека

SciNetwork библиотека — это централизованное хранилище... ещё…

Результаты поиска: 213 док. (сбросить фильтры)
Статья: ИСПОЛЬЗОВАНИЕ ИСКУССТВЕННЫХ НЕЙРОННЫХ СЕТЕЙ ДЛЯ ВЫПОЛНЕНИЯ СЕГМЕНТАЦИИ РЕНТГЕНОГРАММ ТАЗОБЕДРЕННОГО СУСТАВА ПРИ ЛЕЧЕНИИ ОСТЕОАРТРИТА

Процедура рентгенологического анализа в настоящее время позволяет выявить остеоартрит (ОА) на ранних стадиях заболевания. Наличие или отсутствие заболевания выявляется только на той стадии, когда оно уже проявилось и проведена рентгенологическая диагностика. Использование автоматизированных процедур анализа рентгенологических снимков, наличие архивов такой информации с длительной историей позволяют улучшить результаты прогнозирования осложнений у пациентов. В статье описывается опыт разработки приложения компьютерного анализа рентгенограмм, которое на основе методов глубокого обучения позволяет выявлять риски развития остеоартрита тазобедренного сустава. В качестве обучающей выборки используется архив профильного медицинского института. С целью увеличения размера обучающего набора рентгенограмм используется метод аугментации данных, который повышает вариативность исходных данных, в ряде случаев повышает эффективность распознавания. В работе используется конволюционная сеть (U-сеть), предназначенная для сегментации изображений, которая обучается на рентгенограммах конкретного медицинского учреждения. В рамках проекта по сегментации и анализу геометрических характеристик рентгеновских снимков тазобедренных суставов было разработано программное обеспечение, позволяющее автоматизировать распознавание размера суставной щели, что позволяет уточнить диагноз пациента, прогноз развития патологии.

Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 1
Загрузил(а): Акутин Артем
Язык(и): Русский
Доступ: Всем
Статья: РАЗРАБОТКА АРХИТЕКТУРЫ УНИВЕРСАЛЬНОГО ФРЕЙМВОРКА ФЕДЕРАТИВНОГО ОБУЧЕНИЯ

Объектом исследования является технология федеративного обучения, которая позволяет осуществлять коллективное машинное обучение на распределенных обучающих наборах данных без их передачи в единое хранилище. Актуальность данной технологии обусловлена, с одной стороны, давно растущим трендом на использование машинного обучения для решения множества прикладных задач, а с другой - ростом запросов, в том числе законодательных, на приватность и обработку данных ближе к источнику или непосредственно на нем. Основными проблемами при создании систем федеративного обучения являются отсутствие гибких фреймворков для различных сценариев федеративного обучения: большинство существующих решений сосредоточено на обучении искусственных нейронных сетей в централизованной вычислительной среде. Предмет исследования - универсальная архитектура фреймворка для разработки прикладных систем федеративного обучения, позволяющая строить системы для разных сценариев, различных параметров и топологий вычислительной среды, моделей и алгоритмов машинного обучения. В статье рассмотрена предметная область федеративного обучения, даны основные определения и описан процесс федеративного обучения, приведены и разобраны различные сценарии возможных прикладных задач. Проведен анализ наиболее известных на данный момент фреймворков федеративного обучения, а также их применения для возможных сценариев использования. В качестве результата описана архитектура универсального фреймворка, который, в отличие от существующих, может быть использован для разработки прикладных систем федеративного обучения разного типа и разных сценариев использования.

Формат документа: pdf
Год публикации: 2022
Кол-во страниц: 1
Загрузил(а): Холод Иван
Язык(и): Русский, Английский
Доступ: Всем
Статья: АВТОМАТИЗИРОВАННОЕ ДЕТЕКТИРОВАНИЕ И КЛАССИФИКАЦИЯ ОБЪЕКТОВ В ТРАНСПОРТНОМ ПОТОКЕ НА СПУТНИКОВЫХ СНИМКАХ ГОРОДА

В статье рассматриваются разработанные методы детектирования и классификации объектов в транспортном потоке на данных космической съемки сверхвысокого пространственного разрешения. С появлением в свободном доступе больших объемов спутниковых данных все большую актуальность приобретает развитие методов машинного обучения на основании геопространственных данных, в частности, спутниковых. В настоящей работе обоснован выбор источника данных о транспортных потоках - спутниковых снимков сверхвысокого разрешения, рассмотрены основные проблемы и задачи, связанные с распознаванием и классификацией объектов. Целью автора является разработка цепочки алгоритмов, позволяющей с высокой точностью детектировать и классифицировать объекты в транспортных потоках. Исследования основаны на численной оценке качества работы алгоритмов. В работе используются методы распознавания образов, машинного обучения и обработки цифровых изображений. Научная новизна заключается в уникальном алгоритме извлечения изображений локальных участков улично-дорожной сети, алгоритме определения направления дорожного движения объекта, модернизации алгоритма селективного поиска. Следует подчеркнуть, что используемые данные съемки сверхвысокого разрешения появились в доступе для частного использования относительно недавно.

Формат документа: pdf
Год публикации: 2022
Кол-во страниц: 1
Загрузил(а): Тормозов Владимир
Язык(и): Русский, Английский
Доступ: Всем
Статья: АВТОМАТИЗАЦИЯ ОЦЕНКИ СОСТОЯНИЯ ЭЛЕКТРОСЕТИ В УДАЛЕННЫХ РАЙОНАХ РОССИИ С ИСПОЛЬЗОВАНИЕМ СМАРТ-СТРУКТУР

В статье рассматривается способ автоматизации оценки состояния электросети в удаленных районах России с использованием смарт-структур. Предлагаемый способ реализован в виде мобильного приложения. Смарт-структура, лежащая в основе данного способа, состоит из модулей получения и обработки данных с датчиков, поиска закономерностей характеристик электросети и формирования классификаторов состояний, рекомендаций по ремонту и оптимальному режиму эксплуатации электросети и подстанции. Научная новизна предлагаемого решения заключается в методе анализа и обработки характеристик электросети и их совокупностей. Кроме того, учитываются параметры внешних воздействий в виде природных и техногенных факторов. Метод анализа и обработки информации об электросети и подстанции основан на машинном обучении - логическом анализе данных. Оценка состояния электросети и подстанции важна при исследовании и решении задач прогнозирования изменения состояния электросети, подбора рекомендаций и принятия решений о ремонтных и обслуживающих работах. Метод оценки состояния электросети основан на поиске закономерностей и построении классификаторов и позволяет учитывать все характеристики и параметры электросети, их совокупность и связи между ними. Он также дает возможность анализировать и получать закономерности для неполных и неточных данных, с чем достаточно часто приходится сталкиваться в реальных электросетях. Метод может быть использован при проектировании и обслуживании электросетей и подстанции в труднодоступных и удаленных регионах Российской Федерации. Предлагаемая редукция закономерностей характеристик и их совокупностей на основе их рекуррентной конъюнкции позволяет получать оптимальные классификаторы состояний электросети и подстанции с высокой интерпретируемостью и обобщенностью, что увеличивает точность оценки состояния электросети и, как следствие, точность прогноза поведения, рекомендаций и принятия решений о ремонтных работах и оптимальном режиме эксплуатации.

Формат документа: pdf
Год публикации: 2022
Кол-во страниц: 1
Загрузил(а): Шевнина Юлия
Язык(и): Русский, Английский
Доступ: Всем
Статья: МЕТОД АДАПТИВНОЙ КЛАССИФИКАЦИИ ИЗОБРАЖЕНИЙ С ИСПОЛЬЗОВАНИЕМ ОБУЧЕНИЯ С ПОДКРЕПЛЕНИЕМ

В статье представлен метод классификации изображений с использованием, помимо базовой нейронной сети, дополнительной, способной адаптивно концентрироваться на классифицируемом объекте изображения. Задача дополнительной сети является задачей о контекстном многоруком бандите и сводится к предсказанию такой области на исходном изображении, при вырезании которой в процессе классификации возрастет уверенность базовой нейронной сети в принадлежности объекта на изображении правильному классу. Обучение дополнительной сети происходит с помощью методов обучения с подкреплением и стратегий достижения компромисса между эксплуатацией и исследованием при выборе действий для решения задачи о контекстном многоруком бандите. На подмножестве набора данных ImageNet-1K проведены различные эксперименты по выбору архитектуры нейронной сети, алгоритма обучения с подкреплением и стратегии исследования при обучении. Рассмотрены такие алгоритмы обучения с подкреплением, как DQN, REINFORCE и A2C, и такие стратегии исследования, как -жадная, -softmax, -decay-softmax и метод UCB1. Большое внимание уделено описанию проведенных экспериментов и обоснованию полученных результатов. Предложены варианты применения разработанного метода, демонстрирующие увеличение точности классификации изображений по сравнению с базовой моделью ResNet. Дополнительно рассмотрен вопрос о вычислительной сложности данного метода. Дальнейшие исследования могут быть направлены на обучение агента на изображениях, не задействованных при обучении сети ResNet.

Формат документа: pdf
Год публикации: 2022
Кол-во страниц: 1
Загрузил(а): Елизаров Артем
Язык(и): Русский, Английский
Доступ: Всем
Статья: ПРИМЕНЕНИЕ МАШИННОГО ОБУЧЕНИЯ В МЕДИКО-ПСИХОЛОГИЧЕСКОМ СОПРОВОЖДЕНИИ ВОЕННОСЛУЖАЩИХ ИНОСТРАННЫХ ГОСУДАРСТВ

Статья посвящена изучению возможности применения машинного обучения в медико-психологическом сопровождении военнослужащих иностранных государств. Машинное обучение является ветвью искусственного интеллекта. Проведен анализ литературы в базе цитирования PubMed. Выполнялись запросы по ключевым словам: «искусственный интеллект, военнослужащий» и «машинное обучение, военнослужащий» в различных вариантах написания. Из 291 статей отобрано 47, соответствующих тематике медико-психологического сопровождения военнослужащих. В эффективном проведении медико-психологического сопровождения военнослужащих, преимущественно связанного с боевым применением войск, в большей степени заинтересованы военные ведомства США, Дании и Великобритании. Наиболее стабильно учеными применяется методы логистической регрессии, нейронные сети и дерево решений. На данный момент больший интерес у исследователей вызывает применение метода случайного леса, нейронных сетей и ансамблевых методов. Технологи машинного обучения применяются на различных по численности группах обследованных: от 145 до 975057 человек, при расчетах опираются на совокупность предикторов, обладают высокой прогностической способностью, позволяют проводить мероприятия медико-психологического сопровождения и отбора групп риска с высокой эффективностью. Тем не мене, возникает опасность стигматизации определенных групп людей, особенно в случае ложноположительного отнесения человека в группу риска.

Формат документа: pdf
Год публикации: 2023
Кол-во страниц: 1
Язык(и): Русский
Доступ: Всем
Статья: АРХИТЕКТУРА РЕКОМЕНДАТЕЛЬНОГО СЕРВИСА ДЛЯ ВЫБОРА НАПРАВЛЕНИЯ ПОДГОТОВКИ В ВУЗЕ АБИТУРИЕНТАМИ С ИСПОЛЬЗОВАНИЕМ МЕТОДА КОЛЛАБОРАТИВНОЙ ФИЛЬТРАЦИИ МАШИННОГО ОБУЧЕНИЯ

Целью научной статьи является представление исследования архитектуры рекомендательного сервиса, разработанного для помощи абитуриентам в выборе направления подготовки в вузе. Главной функцией сервиса выступает предоставление абитуриентам персонализированных рекомендаций по подготовке на основе их предпочтений, интересов, академических достижений и рейтинга учебного заведения. Архитектура базируется на принципе клиент-серверного взаимодействия, когда клиенты могут получать персонализированные рекомендации и взаимодействовать с сервисом через веб-интерфейс. В статье были решены следующие задачи: выполнены архитектурная декомпозиция и описание основных компонентов сервиса; представлен метод машинного обучения, включая алгоритм коллаборативной фильтрации, который применяется в сервисе и позволяет учитывать предпочтения и предложения других абитуриентов с похожими интересами и образовательным профилем; разработаны рекомендации по выбору пользовательского интерфейса для удобного взаимодействия с сервисом; проведены контрольные примеры с целью оценки эффективности работы рекомендательного сервиса. Исследование показывает, что использование метода коллаборативной фильтрации в архитектуре сервиса позволяет достичь высокой точности и удовлетворения абитуриентов при предоставлении рекомендаций по выбору направления подготовки в вузе. Статья имеет практическую значимость, так как представляет собой реальное применение метода машинного обучения и архитектуры сервиса для помощи абитуриентам в выборе направления подготовки. Результаты исследования могут быть полезными для разработки подобных сервисов в образовательной сфере.

Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 1
Загрузил(а): Прохорова Анна
Язык(и): Русский, Английский
Доступ: Всем
Статья: ПОИСК ОПТИМАЛЬНОГО НАБОРА БУКВ ДЛЯ СТИЛЕВОЙ КЛАССИФИКАЦИИ ХУДОЖЕСТВЕННЫХ ТЕКСТОВ МЕТОДОМ СТАТИСТИЧЕСКИХ ИНДЕКСОВ

В статье рассматривается проблема улучшения методов стилевой классификации русскоязычных текстов. В качестве возможного направления исследований предложен метод оптимизации набора (множества) букв, применяемого для вычисления статистических индексов текстов. Для оптимизации и контроля результатов использованы поэтические и прозаические художественные тексты на русском языке. Объем текстов составлял порядка 300 тысяч знаков при оптимизации и 100 тысяч знаков при контрольной оценке. Для вычисления статистических индексов рассчитывались частотности биграмм и триграмм букв. При оптимизации опробован также и вариант совместного использования индексов биграмм и триграмм. В статье дано краткое описание метода статистических индексов, приведены применявшиеся в исследовании алгоритм пошаговой оптимизации, вид возможной оптимизационной функции и формула для нахождения границы классификации. Показано, что оптимизация набора букв улучшает классификацию по сравнению с вариантом использования как полного набора букв, так и набора из гласных букв в применении к задаче автоматического различения поэтических и прозаических художественных текстов на русском языке. Проведено сравнение результатов классификации по предложенной формуле границы классификации с результатами расчетов по классификации методом ROC-кривых. В итоге для разных сочетаний статистических индексов и способов определения границы классификации интервал верной классификации составил 72-74 % для набора, включающего все буквы, 82-86 % для набора, включающего только гласные буквы, и 80.5-92.5 % для разных наборов букв, полученных при оптимизации.

Формат документа: pdf
Год публикации: 2023
Кол-во страниц: 1
Загрузил(а): Горбич Леонид
Язык(и): Русский, Английский
Доступ: Всем
Статья: ОСОБЕННОСТИ ИСПОЛЬЗОВАНИЯ БОЛЬШИХ ДАННЫХ В ФИНАНСОВОМ СЕКТОРЕ

Цель статьи заключается в теоретическом осмыслении сущности больших данных, в выявлении преимуществ и рисков их использования финансовыми организациями. В статье представлены результаты систематизации знаний о сути и особенностях больших данных. Выявлено, что они позволяют делать более качественные аналитические исследования, создавать модели для прогнозирования экономических тенденций и рыночных изменений, изучать рыночную динамику, анализировать медицинские данные для улучшения диагностики и выбора методов лечения, предсказывать отказ или поломку оборудования в производстве за счет оценки данных с датчиков, разрабатывать социальные и экономические программы на государственном уровне, выявлять мошенничество и коррупцию в финансовом секторе и пр. Обоснована актуальность стремительного развития технологии больших данных и целесообразность ее использования в этой области. В результате анализа научной литературы представлено авторское определение технологии в финансовом секторе, новизна которого заключается в учете особенностей и преимуществ применения больших данных именно финансовыми организациями. Изучение современной практики их использования в этих учреждениях позволило выявить основные сильные стороны, а также недостатки исследуемой технологии.

Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 1
Загрузил(а): Черненков Федор
Язык(и): Русский, Английский
Доступ: Всем
Статья: МОДЕЛИРОВАНИЕ ПОВЕДЕНИЯ ИНТЕЛЛЕКТУАЛЬНЫХ АГЕНТОВ НА ОСНОВЕ МЕТОДОВ МАШИННОГО ОБУЧЕНИЯ В МОДЕЛЯХ КОНКУРЕНЦИИ

В настоящей статье рассматриваются аспекты применения методов машинного обучения к существующим способам моделирования поведения интеллектуальных агентов для обеспечения возможности агентам повысить показатели своей эффективности в моделях конкуренции. Практическая значимость исследования представлена разработкой подхода к моделированию поведения интеллектуальных агентов, за счет которого можно повысить эффективность их функционирования в таких сферах деятельности, как компьютерные игры, разработка беспилотных летательных аппаратов и поисковых роботов, изучение городской и транспортной мобильности, а также в прочих сложных системах. Проведен обзор существующих методов машинного обучения (обучение с подкреплением, глубокое обучение, Q-обучение) и способов моделирования поведения агентов (модель на правилах, конечно-автоматная модель поведения, деревья поведения). Выбрана наиболее подходящая к задаче комбинация метода обучения и модели поведения: деревья поведения и обучение с подкреплением. Средствами Unity реализована тестовая платформа, разработаны модели поведения четырех основных архетипов агентов, которые должны соревноваться в задаче сбора ресурсов в условиях ограниченного времени. Реализован обученный агент с помощью средств Unity ML и TensorFlow. На базе тестовой платформы проведена серия экспериментов в различных условиях: ограниченность, изобилие, среднее количество ресурсов. В рамках эксперимента тестировалась способность разработанной модели поведения интеллектуального агента выигрывать в условиях конкуренции с агентами, снабженными различными вариантами традиционных моделей поведения на базе деревьев поведения. Оценены работоспособность и преимущества использования разработанной модели поведения. Проанализированы результаты эксперимента, сделаны выводы относительно потенциала выбранной комбинации методов.

Формат документа: pdf
Год публикации: 2023
Кол-во страниц: 1
Загрузил(а): Парыгин Данила
Язык(и): Русский, Английский
Доступ: Всем