SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Разработка эффективных алгоритмов анализа сетевых мотивов является актуальным и имеет достаточно большое значение при исследовании социальных, биологических и некоторых других сетей. В статье представлено веб-приложение для подсчёта частот встречаемости подграфов на трех и четырех вершинах в больших сетях, а также для выявления так называемых сетевых мотивов. Веб-приложение реализует функционал системы MFSView и основывается на методе случайного выбора остовных деревьев. Разработанная система построена по типу клиент-серверной архитектуры и использует ряд таких эффективных технологий и фреймворков, как на клиенте - JavaScript и bootstrap, так и на сервере - Django.
В настоящее время большинство угроз безопасности операционной системы в пользовательском режиме достаточно легко обнаруживаются современными антивирусными программами. Разработчики вредоносного программного обеспечения намного чаще используют уязвимости в ядре операционной системы Windows для затруднения поиска такого программного обеспечения, а также получения полного контроля над работой операционной системы. Одна из главных уязвимостей ядра операционной системы Windows - динамическое исполнение кода в ядре, обходя строгие требования Microsoft для разработчиков программного обеспечения в режиме ядра. Предлагаются возможные способы обнаружения исполнения такого кода, а также концепт разработки решения для мониторинга исполнения потенциально вредоносного кода в ядре операционной системы Windows.
Рассмотрены вопросы моделирования вычислительных процессов, позволяющих оценить потенциальные возможности используемых программных средств по негативному влиянию на работу различных видов человеко-машинных систем, в том числе обладающих признаками искусственного интеллекта. В ходе численного эксперимента анализировались программы, предоставляющие интеллектуальную поддержку роботам-ассистентам преподавателей и реализующие определенные функции в вычислительном комплексе «умного дома», с учетом их агрессивного поведения. Обсужден ряд вопросов, связанных с результатами этого эксперимента. Показан подход, позволяющий выделить группу операторов машинного языка программирования, имеющих потенциал для формирования программных закладок общего и специального видов, влияющих на информационную экологию и корректную работу компонентов «умного дома». Даны рекомендации по формированию набора признаков агрессивности в зависимости от специфики применения конкретных программных средств.