SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Для обеспечения надежной и безопасной эксплуатации насыпей восточного участка БАМа, в том числе после модернизации или ремонта, необходимо исключить или минимизировать криогенные деформации сооружений. Этому способствует повышение эффективности принимаемых противодеформационных решений за счет объективной оценки существующих криогенных проблем, а также систематизации и прогнозирования сценариев дальнейшего развития деформаций насыпей рассматриваемого полигона.
С опорой на исторические аспекты создания и эксплуатации БАМа обобщены и сформулированы текущие криогенные проблемы полигона. Сформулированы и систематизированы восемь возможных сценариев развития криогенных деформаций эксплуатируемых насыпей на восточном участке БАМа. Для вероятностного прогноза сценариев развития криогенных деформаций и обоснования первоочередных направлений разработки эффективных решений по стабилизации системы «насыпь - основание» выполнено обследование насыпей на рассматриваемом полигоне.
По результатам обследования насыпей на пяти перегонах выявлены особенности их текущего состояния и деформирования. Эксплуатируемые насыпи на восточном участке БАМа не только имеют последствия уже свершившейся деградации многолетнемерзлых грунтов в основании, но и обладают потенциалом к деформациям при дальнейшей эксплуатации, в том числе после модернизации и ремонта. Причем эти деформации могут происходить с определенной спецификой и по различным сценариям.
Прогноз сценариев развития криогенных деформаций показал, что наиболее вероятным сценарием развития деформаций на участках насыпей рассматриваемого полигона являются осадки сооружений из-за деградации многолетнемерзлых грунтов в основании в период оттаивания. Вероятность других сценариев относительно невысока (до 15 %), но она существует и не может не учитываться при дальнейшей модернизации или ремонтах пути. Значительная часть прогнозируемых сценариев (до 30 %) сочетают сразу несколько криогенных проблем. На этом фоне повышается актуальность дальнейших исследований и расчетно-теоретического обоснования комплексных решений по термостабилизации.
Вопросы, связанные с эксплуатацией искусственных сооружений (ИССО) в северной строительно-климатической зоне, которая охватывает 40 % территории Российской Федерации и 80 % территории Дальнего Востока России, являются важными во всех аспектах. При этом речь идет не только о существующих искусственных сооружениях транспортной инфраструктуры, но и о строящихся, а также об объектах, строительство которых планируется. К примеру, на территории, находящейся в ведении Дальневосточной железной дороги, на 1 км пути приходится один объект, относящийся к малым ИССО; данные объекты расположены в криолитозоне, что накладывает дополнительные требования по контролю за техническим состоянием и проведению дополнительных мероприятий, направленных на предотвращение перехода конструкций объекта в аварийное состояние. Существующие на сегодняшний день способы мониторинга технического состояния позволяют контролировать и с высокой степенью достоверности прогнозировать возможные условия, причины и последствия возникновения инцидентов, тем не менее, с учетом роста возможности цифрового моделирования, визуализации и прогнозирования, целесообразно использовать все имеющиеся возможности для формирования информационных моделей объектов ИССО для наиболее эффективного сохранения их работоспособного состояния.
В статье рассматривается пример численного моделирования основания и фундамента ИССО, приведено решение численной задачи по распределению тепловых полей, выполнено решение численной задачи с прогнозом изменения во временной перспективе. Целью настоящего исследования являлась оценка возможных негативных событий на различных этапах жизненного цикла ИССО и построение цифровой модели для прогноза безопасной эксплуатации.
В результате получена цифровая модель фундаментов, которая может быть использована для решения различных задач, приведено обоснование целесообразности построения информационных моделей сооружений транспортной инфраструктуры.
Целью данного исследования является всесторонний анализ наиболее опасных процессов и явлений, возникающих при прокладке трубопроводов в районах с прерывистым распространением многолетнемерзлых пород. В ходе работы использовались методы ретроспективного анализа и обработки результатов инженерных изысканий, а также оценочные методики для проведения районирования участков трассы трубопровода. По итогам исследования были подробно описаны наиболее опасные и сложные для теплового моделирования и проектирования процессы и явления. Результаты работы включают как описательную часть вскрытого геологического строения исследуемой территории, так и систематизированную ландшафтную характеристику участка в соответствии с трудностью проектирования и эксплуатации трубопровода. По ландшафтному районированию выделено 5 крупных районов и 15 участков вдоль трассы исследуемого трубопровода. Были определены критерии для оценки опасных геологических процессов с использованием балльного метода и проведена оценка по выделенным ключевым участкам. Кроме того, проведено ранжирование участков до уровня подрайонов, что позволяет более точно оценить риски и разработать стратегии для минимизации потенциальных угроз при строительстве и эксплуатации трубопроводов в этих сложных условиях.
Цель работы - автоматизация подбора оптимальных параметров теплоизолирующего слоя, подстилающего нефтепровод, проложенного наземным способом на многолетнемерзлых грунтах. При прокладке нефтепровода в условиях вечной мерзлоты возникает зона оттаивания грунта, которая впоследствии в период эксплуатации может привести к негативным явлениям, возникающим в грунте, и, как следствие, возникновению деформаций в нефтепроводе. Для уменьшения ореола оттаивания используется теплоизолирующий слой, подстилающий нефтепровод. В данной статье описывается способ определения оптимальных размеров теплоизолирующего слоя, подстилающего нефтепровод и позволяющего свести зону оттаивания мерзлого грунта вокруг трубопровода к минимуму. В качестве модели использовался стальной нефтепровод по аналогу с трубопроводом Заполярье - Пурпе. Для расчетов использовались характеристики грунтов Республики Саха. Материал теплоизолирующего слоя представляет собой пенополиуретан. Исследование проводилось в программном комплексе PLAXIS 2D. В результате исследования разработан алгоритм определения оптимальных размеров теплоизолирующего слоя, подстилающего нефтепровод. Полученный алгоритм позволяет автоматизировать поиск оптимальных параметров теплоизолирующего слоя путем минимизации не только зоны оттаивания грунта, но и затрат на теплоизоляцию. Разработанный алгоритм является универсальным и может быть реализован в любом программном обеспечении (общем или специальном) с любой степенью дискретизации шага расчета.
Приведено сравнение мощностей установок типа “ГЕТ”, работающих на хладагентах - углекислоте и аммиаке. Показано, что мощность установки с углекислотой всегда выше мощности установки с аммиаком.
Рассматривается проблематика строительства в условиях распространения вечномерзлых (многолетнемерзлых) грунтов с учетом фиксируемого изменения климата. Приводятся данные изменения климатических условий на территории Российской Федерации, а также в районе площадки строительства (Ямало-Ненецкий автономный округ). Анализ наблюдений за приповерхностной температурой воздуха показывает повышение среднегодовых температур относительно нормативных значений на 2–2,5 °С, что значительно сказывается на температурном режиме грунтов.
Приведены результаты статических испытаний грунтов сваями в талых и мерзлых условиях площадки строительства. По результатам статических испытаний грунтов сваями выявлено, что частные значения несущей способности свай в талых грунтах на вдавливающие нагрузки в 2,5 раза ниже, чем в аналогичных мерзлых грунтах.
В статье приводятся результаты наблюдений за температурным режимом грунтов в период термостабилизации грунтового основания при строительстве жилого дома. По результатам наблюдений выявлены периоды формирования льдогрунтового массива под сооружением, а также его деградация за теплый период года.
Выполнено численное моделирование температурного режима грунтов основания в программном комплексе Midas FEA NX с учетом фактических климатических параметров и начальных температур грунтов.
По результатам численного моделирования получено наглядное представление о стадиях формирования мерзлого массива грунта от создания отдельных льдогрунтовых элементов вокруг термостабилизаторов, с постепенным смерзанием мерзлых зон в сплошной льдогрунтовый массив. Также в результате численного моделирования получено распределение температур в грунтовом основании. Выполнено сравнение прогнозных температурных расчетов с результатами замеров температур грунтового основания.
Апробирована методика по диагностике работоспособности систем и устройств термостабилизации грунтов с использованием тепловизоров в условиях городской застройки. Получены результаты работоспособности сезоннодействующих установок под объектами мониторинга и проведен анализ их эффективности.
В работе представлены результаты полевых экспериментов, демонстрирующих возможность обнаружения потери стабильности конструкций зданий по данным, полученным на сваях и основании зданий методом стоячих волн. Анализ вертикальных стоячих волн сжатия-растяжения в свае под действием шумов позволяет контролировать ее длину и качественное закрепление нижнего конца. В результате на обследуемых объектах обнаружено 49 висячих свай или 9,86%. Установлены зоны повышенных амплитуд, которые соответствуют скрытым трещинам и повышенным зонам напряжения в конструкциях. Показана эффективность метода для диагностики устойчивости конструкций зданий.