SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
There are two main approaches to the numerical solution of the eikonal equation: reducing it to a system of ODES (method of characteristics) and constructing specialized methods for the numerical solution of this equation in the form of a partial differential equation. The latter approach includes the FSM (Fast sweeping method) method. It is reasonable to assume that a specialized method should have greater versatility. The purpose of this work is to evaluate the applicability of the FSM method for constructing beams and fronts. The implementation of the FSM method in the Eikonal library of the Julia programming language was used. The method was used for numerical simulation of spherical lenses by Maxwell, Luneburg and Eaton. These lenses were chosen because their optical properties have been well studied. A special case of flat lenses was chosen as the easiest to visualize and interpret the results. The results of the calculations are presented in the form of images of fronts and rays for each of the lenses. From the analysis of the obtained images, it is concluded that the FSM method is well suited for constructing electromagnetic wave fronts. An attempt to visualize ray trajectories based on the results of his work encounters a number of difficulties and in some cases gives an incorrect visual picture.
In this paper, we study the effect of using the Metropolis–Hastings algorithm for sampling the integrand on the accuracy of calculating the value of the integral with the use of shallow neural network. In addition, a hybrid method for sampling the integrand is proposed, in which part of the training sample is generated by applying the Metropolis–Hastings algorithm, and the other part includes points of a uniform grid. Numerical experiments show that when integrating in high-dimensional domains, sampling of integrands both by the Metropolis–Hastings algorithm and by a hybrid method is more efficient with respect to the use of a uniform grid.
Выполнена оценка эффективности использования алгоритма Шварца в комбинации с энергетическим методом граничных состояний (МГС) на каждом шаге итерационного процесса в сравнении с «прямым» использованием МГС для двухполостного упругого тела. Оценена экономия временных затрат на проведение расчетов и обнаружен высокий уровень сходимости в трехмерном случае. Комбинированный метод использован для решения задачи об оценке пределов возможной локализации сферической полости в биконусном теле при фиксированном варианте нагружения по поверхности. Сделаны выводы.
Численное исследование различных процессов приводит к необходимости уточнения (расширения) границ применимости вычислительных конструкций и инструментов моделирования. В настоящей статье изучается дифференцируемость в пространстве интегрируемых по Лебегу функций и рассматривается согласованность этого понятия с основополагающими вычислительными построениями такими, как разложение Тейлора и конечные разности. Функцию f из L1[a;b] назовём (k,L)-дифференцируемой в точке x0 из (a;b), если существует алгебраический многочлен P, степени не выше k, такой, что интеграл по отрезку от x0 до x0+h для f−P есть o(hk+1). Найдены формулы для вычисления коэффициентов такого P, представляющие собой предел отношения интегральных модификаций конечных разностей Δmh(f,x) к hm,m=1,⋯,k. Получается, что если f∈Wl1[a;b], и f(l) является (k,L)-диффе\-ренци\-руемой в точке x0, то f приближается тейлоровским многочленом с точностью o((x−x0)l+k), а коэффициенты разложения могут быть найдены указанным выше способом. Для исследования функций из L1 на множестве применяется дискретная <<глобальная>> конструкция разностного выражения: на основе частного Δmh(f,⋅) и hm строится последовательность {Λmn[f]} кусочно-постоянных функций, подчинённых разбиениям полуинтервала [a;b) на n равных частей. Показано, что для (k,L)-диффе\-ренци\-руемой в точке x0 функции f последовательности {Λmn[f]},m=1,⋯,k, сходятся при n→∞ в этой точке к коэффициентам приближающего в ней функцию многочлена. С помощью {Λkn[f]} устанавливается теорема: {\it <<f из L1[a;b] принадлежит Ck[a;b]⟺ f равномерно (k,L)-диффе\-рен\-цируе\-ма на [a;b]>>.} Отдельное место занимает изучение построений, соответствующих случаю m=0. Их рассматриваем в L1[Q0], где Q0 -- куб в пространстве Rd. По заданной функции f∈L1 и разбиению τn полузамкнутого куба Q0 на nd равных полузамкнутых кубов построим кусочно-постоянную функцию Θn[f], определяемую как интегральное среднее f на каждом кубе Q∈τn. Данная вычислительная конструкция приводит к следующим теоретическим фактам: {\it \,1)\,f из L1 принадлежит Lp,1≤p<∞,⟺{Θn[f]} сходится в Lp; ограниченность {Θn[f]}⟺f∈L∞; 2)\,последовательности {Θn[⋅]} определяют на классах эквивалентности оператор-проектор Θ в пространстве L1; 3)\,для функции f∈L∞ получаем Θ[f]¯¯¯¯¯¯∈B, где B -- это пространство ограниченных функций, а Θ[f]¯¯¯¯¯¯ -- доопределённая на множестве меры ноль функция Θ[f](x), и выполняется равенство ∥∥Θ[f]¯¯¯¯¯¯∥∥B=∥f∥∞. } Таким образом, в семействе пространств Lp можно заменить L∞[Q0] на B[Q0].