До настоящего времени продолжают оставаться актуальными проблемы существования и устойчивости для различных классов краевых задач теории уравнений математической физики. Особенно большие успехи достигнуты за последние десятилетия в линейных проблемах, где метод интегральных уравнений со знаменистой альтернативой Фредгольма дал возможность до конца изучить все основные линейные задачи для уравнений эллиптического типа; этот же метод дал возможность сильно продвинуть известную проблему Трикоми для уравнений смешанного типа.
Начиная с известных исследований А. Вилля, Т. Леви-Чивиты и А. И. Некрасова, мы имеем большой цикл работ по классическим нелинейным проблемам механики сплошных сред — задача о струйном обтекании произвольного контура и задача о волновых движениях тяжелой жидкости.
Наибольшее число работ в этом направлении известно также на интегральные уравнения (нелинейные) с применением метода разложений по малому параметру (А. И. Некрасов, Н. Е. Кочин и др.) или с применением методов функционального анализа, в частности знаменистую теорему о неподвижной точке (Ж. Лере, А. Вейнштейн, Ю. Кравченко и др.).