SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
В основу этой книжки легли лекции-беседы, которые я несколько раз проводил со школьниками либо VII–VIII, либо IX–X классов в школьном математическом лектории при Московском государственном университете имени М.В. Ломоносова. Для той и для другой аудитории обычно устраивались две встречи, разделённые промежутком около месяца. Первые встречи соответствовали по содержанию главам I и III этой книжки, имели характер лекций и содержали кроме введения, изложение примеров ошибочных доказательств без комментариев; в конце лекции слушателям предлагалось выяснить сущность сделанных ошибок и быть готовыми при следующей встрече выступить со своими возражениями. Вторые встречи были уже в большей степени беседами: лектор напоминал вкратце содержание каждого примера и непосредственно вслед за тем приглашал желающих выступить. Таких всегда было несколько, к доске выходил один, наудачу выбранный; остальным предоставлялось делать реплики с мест, иногда также выходить к доске. Разбор каждого примера заканчивался краткими высказываниями лектора, содержащими дополнения, варианты и подведение итога.
Трудно думать, что все школьники, активно участвовавшие в этой работе, готовились к ней без посторонней помощи. Но даже вразумительно изложить заимствованное опровержение софизма составляло далеко не всегда простую задачу. К чести московских школьников, посещавших лекторий, надо признать, что они показали себя здесь с лучшей стороны; некоторые выступления были просто превосходны.
Ободрённый этим опытом, я обращаюсь теперь к более широкой аудитории в надежде, что эта книжка пробудит у читателя не, только любознательность, но и математическую активность. Последняя может проявиться в том, что читатель пройдёт путь, рекомендованный слушателям моих лекций-бесед: сначала будет знакомиться с примерами ошибочных рассуждений, изложенными в главах I (для школьников, начиная с VII класса средней школы) и III (для IX–X классов); затем в каждом случае попытается вскрыть ошибку собственными силами; наконец, прочитает главы II и IV, где найдёт разъя