В книге излагаются аналитические и численные методы теории гамильтоновых систем и их приложения к исследованию движений, близких к точкам либрации ограниченной задачи трех тел. Основное внимание уделяется устойчивости положений равновесия и периодических движений нелинейных гамильтоновых систем в резонансных случаях, когда чисто мнимые характеристические показатели линеаризованной системы уравнений возмущенного движения связаны целочисленными соотношениями.
Подробно исследована задача об устойчивости треугольных точек либрации ограниченной задачи трех тел. Разработан способ построения и исследования устойчивости периодических движений, близких положениям равновесия автономных гамильтоновых систем. Этот способ применен в анализе периодических движений, близких треугольным точкам либрации. Построена приближенная аналитическая теория движения вблизи прямолинейной окололунной точки либпации.