SCI Библиотека

SciNetwork библиотека — это централизованное хранилище... ещё…

Результаты поиска: 4913 док. (сбросить фильтры)
Статья: ВОЗМОЖНОСТИ ПАРАЛЛЕЛИЗМА ПРИ ИДЕНТИФИКАЦИИ КВАЗИЛИНЕЙНОГО РЕКУРРЕНТНОГО УРАВНЕНИЯ

Анализ временных рядов и прогнозирование являются одной из широко исследуемых областей. Идентификация с помощью различных статистических методов, нейронных сетей или математических моделей уже давно используется в различных областях исследований от промышленности, до медицины, социальной сферы, аграрной среды. В статье рассматривается параллельный вариант алгоритма идентификации параметров квазилинейного рекуррентного уравнения для решения задачи регрессионного анализа с взаимозависимыми наблюдаемыми переменными, основанный на обобщенном методе наименьших модулей (GLDM). В отличие от нейронных сетей, широко используемых в настоящее время в различных системах прогнозирования, данный подход позволяет в явном виде получать качественные квазилинейные разностные уравнения, адекватно описывающие рассматриваемый процесс. Это позволяет повысить качество анализа изучаемых процессов. Существенным преимуществом модели, использующей обобщенный метод наименьших модулей, по сравнению с многочисленными нейросетевыми подходами является возможность интерпретации коэффициентов модели с точки зрения задачи исследования и использование полученного уравнения в качестве модели динамического процесса. Проведенные вычислительные эксперименты с использованием временных рядов показывают, что максимальное ускорение алгоритма происходит при использовании количества потоков, равного половине возможных потоков для данного устройства.

Формат документа: pdf
Год публикации: 2023
Кол-во страниц: 1
Язык(и): Русский, Английский
Доступ: Всем
Статья: МЕТОДЫ УПРАВЛЕНИЯ WORK-STEALING ДЕКАМИ В ДИНАМИЧЕСКИХ ПЛАНИРОВЩИКАХ МНОГОПРОЦЕССОРНЫХ ПАРАЛЛЕЛЬНЫХ ВЫЧИСЛЕНИЙ

В параллельных планировщиках задач, работающих по стратегии work-stealing, каждый процессор имеет свой дек задач. Один конец дека используется для добавления и извлечения задач только владельцем, а другой - для перехвата задач другими процессорами. В статье предлагается обзор методов управления work-stealing деками, которые используются при реализации work-stealing планировщиков параллельных задач, а также представлено описание поставленных и решенных нашим коллективом задач оптимального управления деками для стратегии work-stealing. Принцип алгоритмов оптимального управления деками в двухуровневой памяти заключается в том, что при переполнении выделенного участка быстрой памяти происходит перераспределение элементов (задач) дека между уровнями памяти. В быстрой памяти остаются элементы из концов дека, так как с ними будет происходить работа в ближайшее время, а элементы средней части дека хранятся в медленной памяти. В таком случае необходимо определить оптимальное количество элементов, которое нужно оставить в быстрой памяти, в зависимости от критерия оптимальности и параметров системы.

Формат документа: pdf
Год публикации: 2023
Кол-во страниц: 1
Загрузил(а): Аксенова Елена
Язык(и): Русский, Английский
Доступ: Всем
Статья: ИССЛЕДОВАНИЕ НЕЙРОСЕТЕВОГО МЕТОДА РЕШЕНИЯ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

В статье исследован метод определения вектора движения по гиперплоскостям, ограничивающим допустимый многогранник многомерной задачи линейного программирования на основе визуальных образов, подаваемых на вход нейронной сети прямого распространения. Алгоритм визуализации строит в окрестности точки, расположенной на ограничивающей гиперплоскости, рецептивное поле. Для каждой точки рецептивного поля вычисляется скалярное смещение до поверхности гиперплоскости. На основании вычисленного смещения каждой точке рецептивного поля присваивается скалярная величина. Полученный визуальный образ подается на вход нейронной сети прямого распространения, которая вычисляет на ограничивающей гиперплоскости направление максимального увеличения целевой функции. В статье предложена усовершенствованная форма крестообразного рецептивного поля. Описано построение обучающего множества на основе случайно сгенерированных ограничивающих гиперплоскостей и целевых функций в многомерных пространствах. Разработана масштабируемая архитектура нейронной сети с изменяемым числом скрытых слоев. Произведен подбор гиперпараметров нейронной сети. В вычислительных экспериментах подтверждена высокая (более 98%) точность работы крестообразного рецептивного поля. Исследована зависимость точности результатов нейронной сети от числа скрытых слоев и продолжительности обучения.

Формат документа: pdf
Год публикации: 2023
Кол-во страниц: 1
Загрузил(а): Ольховский Николай
Язык(и): Русский, Английский
Доступ: Всем
Статья: ОБЗОР ПРИМЕНЕНИЯ ГЛУБОКИХ НЕЙРОННЫХ СЕТЕЙ И ПАРАЛЛЕЛЬНЫХ АРХИТЕКТУР В ЗАДАЧАХ ФРАГМЕНТАЦИИ ГОРНЫХ ПОРОД

Оценка производительности добычи полезных ресурсов, в том числе определение геометрических размеров объектов горной породы в открытом карьере, является одной из наиболее важных задач в горнодобывающей промышленности. Задача фрагментации горных пород решается с помощью методов компьютерного зрения, таких как экземплярная сегментация или семантическая сегментация. В настоящее время для решения таких задач для цифровых изображений используются нейронные сети глубокого обучения. Нейронные сети требуют больших вычислительных мощностей для обработки цифровых изображений высокого разрешения и больших наборов данных. Для решения этой проблемы в литературе предлагается использование облегченных архитектур нейронных сетей, а также методов оптимизации производительности, таких как параллельные вычисления с помощью центральных, графических и специализированных процессоров. В обзоре рассматриваются последние достижения в области нейронных сетей глубокого обучения для решения задач компьютерного зрения применительно к фрагментации горных пород и вопросы повышения производительности реализаций нейронных сетей на различных параллельных архитектурах.

Формат документа: pdf
Год публикации: 2023
Кол-во страниц: 1
Загрузил(а): Ронкин Михаил
Язык(и): Русский, Английский
Доступ: Всем
Статья: ОБ ОДНОЙ ГИПОТЕЗЕ ТЕОРИИ ФОРМАЛЬНЫХ ЯЗЫКОВ. ЧАСТЬ I

Основной предмет статьи - рассмотрение задач, возникающих при исследовании необходимых условий равенства бесконечных итераций конечных языков. В предыдущих публикациях автором рассматривались примеры применения соответствующего этому равенству специального бинарного отношения эквивалентности на множестве конечных языков, причем рассматривались как примеры, описывающие необходимые условия его выполнения, так и примеры его использования. К одному из таких необходимых условий применены два варианта сведeния рассматриваемой задачи: к конечным автоматам и к бесконечным итерационным деревьям. Также в статье приведены несколько вариантов важной гипотезы, формулируемой для множества конечных языков; ее исследование дает и иные варианты сведeния рассматриваемой задачи к специальным задачам для недетерминированных конечных автоматов. При этом в случае выполнения сформулированной гипотезы некоторые из таких задач решаются за полиномиальное время, а некоторые не решаются; при продолжении работ по данной тематике последний факт может дать возможность переформулировки проблемы P = NP в виде специальной задачи теории формальных языков.

Формат документа: pdf
Год публикации: 2023
Кол-во страниц: 1
Загрузил(а): Мельников Борис
Язык(и): Русский, Английский
Доступ: Всем
Статья: ОБНАРУЖЕНИЕ АНОМАЛИЙ ВРЕМЕННОГО РЯДА НА ОСНОВЕ ТЕХНОЛОГИЙ ИНТЕЛЛЕКТУАЛЬНОГО АНАЛИЗА ДАННЫХ И НЕЙРОННЫХ СЕТЕЙ

В статье рассмотрена задача поиска аномальных подпоследовательностей временного ряда, решение которой в настоящее время востребовано в широком спектре предметных областей. Предложен новый метод обнаружения аномальных подпоследовательностей временного ряда с частичным привлечением учителя. Метод базируется на концепциях диссонанса и сниппета, которые формализуют соответственно понятия аномальных и типичных подпоследовательностей временного ряда. Предложенный метод включает в себя нейросетевую модель, которая определяет степень аномальности входной подпоследовательности ряда, и алгоритм автоматизированного построения обучающей выборки для этой модели. Нейросетевая модель представляет собой сиамскую нейронную сеть, где в качестве подсети предложено использовать модификацию модели ResNet. Для обучения модели предложена модифицированная функция контрастных потерь. Формирование обучающей выборки выполняется на основе репрезентативного фрагмента ряда, из которого удаляются диссонансы, маломощные сниппеты со своими ближайшими соседями и выбросы в рамках каждого сниппета, трактуемые соответственно как аномальная, нетипичная деятельность субъекта и шумы. Вычислительные эксперименты на временных рядах из различных предметных областей показывают, что предложенная модель по сравнению с аналогами показывает в среднем наиболее высокую точность обнаружения аномалий по стандартной метрике VUS-PR. Обратной стороной высокой точности метода является большее по сравнению с аналогами время, которое затрачивается на обучение модели и распознавание аномалии. Тем не менее, в приложениях интеллектуального управления отоплением зданий метод обеспечивает быстродействие, достаточное для обнаружения аномальных подпоследовательностей в режиме реального времени.

Формат документа: pdf
Год публикации: 2023
Кол-во страниц: 1
Загрузил(а): Краева Яна
Язык(и): Русский, Английский
Доступ: Всем
Статья: АВТОМАТИЗИРОВАННОЕ ПРОЕКТИРОВАНИЕ И ИСПОЛНЕНИЕ ЭФФЕКТИВНЫХ ПРОГРАММ ДЛЯ ЧИСЛЕННЫХ АЛГОРИТМОВ

Проектировать эффективные параллельные программы для многопроцессорных архитектур сложно, так как нет четких формальных правил, которых необходимо придерживаться. Для решения этой проблемы при реализации численных алгоритмов может применяться концепция Q-детерминанта. Данная теория позволяет проводить автоматизированный анализ ресурса параллелизма алгоритма, автоматизированное сравнение ресурсов параллелизма алгоритмов, решающих одну и ту же алгоритмическую проблему, проектировать эффективные программы для реализации алгоритмов с помощью специально разработанного метода проектирования, повысить эффективность реализации численных методов и алгоритмических проблем. Результаты, полученные на основе концепции Q-детерминанта, представляют собой один из вариантов решения проблемы эффективной реализации численных алгоритмов, методов и алгоритмических проблем на параллельных вычислительных системах. Однако пока остается не решенной фундаментальная проблема автоматизированного проектирования и исполнения для любого численного алгоритма программы, реализующей алгоритм эффективно. В статье описана разработка единой для численных алгоритмов программной системы проектирования и исполнения Q-эффективных программ - эффективных программ, спроектированных с помощью концепции Q-детерминанта. Система предназначена для использования на параллельных вычислительных системах с общей памятью. Она состоит из компилятора и виртуальной машины. Компилятор преобразует представление алгоритма в форме Q-детерминанта в исполняемую программу, использующую ресурс параллелизма алгоритма полностью. Виртуальная машина исполняет программу, полученную с помощью компилятора. В статье также приведено экспериментальное исследование созданной программной системы с применением суперкомпьютера «Торнадо ЮУрГУ».

Формат документа: pdf
Год публикации: 2023
Кол-во страниц: 1
Загрузил(а): Алеева Валентина
Язык(и): Русский, Английский
Доступ: Всем
Статья: ПОДХОД К КЛАССИФИКАЦИИ МНОГОМОДАЛЬНЫХ ДАННЫХ О ЗАБОЛЕВАНИЯХ ПНЕВМОНИЕЙ НА ОСНОВЕ ПРОМЕЖУТОЧНОГО СЛИЯНИЯ

В медицинской практике первичную диагностику заболеваний следует проводить быстро и по возможности автоматически. Обработка многомодальных данных в медицине стала повсеместно распространеннымметодом классификации, прогнозирования и обнаружения заболеваний. Пневмония - одно из наиболее распространенных заболеваний легких. В нашем исследовании для выявления пневмонии мы использовалирентгенограммы органов грудной клетки в качестве первой модальности и результаты лабораторных исследований пациента в качестве второй модальности. Архитектура многомодальной модели глубокого обучениябыла основана на промежуточном слиянии. Модель обучалась на сбалансированных и несбалансированныхданных, когда наличие пневмонии определялось в 50% и 9% от общего числа случаев соответственно. Дляболее объективной оценки результатов мы сравнили производительность нашей модели с несколькими другими моделями с открытым исходным кодом на наших данных. Эксперименты демонстрируют высокуюэффективность предложенной модели выявления пневмонии по двум модальностям даже в случаях несбалансированных классов (до 96.6%) по сравнению с результатами одномодальных моделей (до 93.5%). Мысделали несколько интегральных оценок производительности предлагаемой модели, чтобы охватить и исследовать все аспекты многомодальных данных и особенностей архитектуры. Были показатели точности,ROC AUC, PR AUC, показателя F1 и коэффициента корреляции Мэтьюса. Используя различные метрики, мы доказали возможность и целесообразность использования предложенной модели с целью правильнойклассификации заболевания. Эксперименты показали, что производительность модели, обученной на несбалансированных данных, даже немного выше, чем у других рассмотренных моделей.

Формат документа: pdf
Год публикации: 2023
Кол-во страниц: 1
Загрузил(а): Иванова Ольга
Язык(и): Русский, Английский
Доступ: Всем
Статья: ОБ ИСПОЛЬЗОВАНИИ ДЕРЕВЬЕВ РЕШЕНИЙ ДЛЯ ВЫЯВЛЕНИЯ ОБЛАСТЕЙ ПРИТЯЖЕНИЯ ЛОКАЛЬНЫХ МИНИМУМОВ В ПАРАЛЛЕЛЬНОМ АЛГОРИТМЕ ГЛОБАЛЬНОЙ ОПТИМИЗАЦИИ

В работе рассматривается решение многомерных задач многоэкстремальной оптимизации с использованием деревьев решений для выявления областей притяжения локальных минимумов. Целевая функцияпредставлена как «черный ящик», она может быть недифференцируемой, многоэкстремальной и вычислительно трудоемкой. Для функции предполагается, что она удовлетворяет условию Липшица с априоринеизвестной константой. Для решения поставленной задачи многоэкстремальной оптимизации применятсяалгоритм глобального поиска. Хорошо известно, что сложность решения существенно зависит от наличия нескольких локальных экстремумов. В данной работе предложена модификация алгоритма, в которойопределяются окрестности локальных минимумов целевой функции на основе анализа накопленной поисковой информации. Проведение такого анализа с использованием методов машинного обучения позволяетпринять решение о запуске локального метода, что может ускорить сходимость алгоритма. Данный подход был подтвержден результатами численных экспериментов, демонстрирующих ускорение при решениинабора тестовых задач.

Формат документа: pdf
Год публикации: 2023
Кол-во страниц: 1
Язык(и): Русский, Английский
Доступ: Всем
Статья: РАБОТА С ДАННЫМИ В УЧЕБНОМ ЯЗЫКЕ ПРОГРАММИРОВАНИЯ СИНХРО

Статья является продолжением собственных предыдущих исследований автора в рамках многолетней работы по созданию учебного языка программирования СИНХРО, предназначенного для ознакомления с параллелизмом. Основное направление работ - уточнение понятий, способствующих подготовке небольших многопоточных программ при обучении параллельному программированию. Главный результат последнего года заключается в развитии механизма взаимодействия локальной и общей памяти. Дан приоритет парадигме функционального программирования, популярной при подготовке прототипов многопоточных программ. Это помогло преодолеть зависимость порядка вычислений от последовательности вхождения выражений в текст программы и размещения данных в памяти. Описаны отличия от привычных понятий программирования, сдерживающих решение задач организации параллельных вычислений и предельно распределенных систем из ряда потоков, взаимодействующих в терминах доступа к значениям переменных, возможно расположенных в общей памяти. Повышен базовый уровень воздействий на память. Часть из них укрупнены для предотвращения неожиданностей из-за асинхронности и ослабления императивности элементов распределенных систем. Добавлено понятие команд-двойников для управления императивной синхронизацией взаимодействующих устройств, полезное при решении вопросов освобождения памяти.

Формат документа: pdf
Год публикации: 2023
Кол-во страниц: 1
Загрузил(а): Городняя Лидия
Язык(и): Русский, Английский
Доступ: Всем