SCI Библиотека

SciNetwork библиотека — это централизованное хранилище... ещё…

Результаты поиска: 213 док. (сбросить фильтры)
Статья: Применение технологий искусственного интеллекта для оптимизации технологических процессов в производстве

В данной статье рассматриваются перспективы применения технологий искусственного интеллекта (ИИ) для оптимизации технологических процессов в производстве. Целью исследования является анализ возможностей и ограничений использования ИИ в промышленности, а также выявление наиболее перспективных направлений его внедрения. В качестве материалов и методов исследования использовались обзор научной литературы по теме, анализ существующих примеров применения ИИ в производстве, а также экспертные интервью со специалистами в области ИИ и промышленного производства. Был проведен систематический поиск релевантных научных публикаций в базах данных Scopus, Web of Science и Google Scholar за период с 2010 по 2023 год. Ключевыми словами для поиска были «искусственный интеллект», «машинное обучение», «оптимизация производства», «промышленность 4.0» и др. Из найденных 2347 публикаций после анализа аннотаций было отобрано 156 наиболее релевантных работ для детального изучения. Кроме того, было проведено 12 глубинных интервью с экспертами длительностью от 40 до 90 минут. Результаты исследования показали, что применение ИИ позволяет значительно повысить эффективность производственных процессов. Наибольший потенциал ИИ демонстрирует в таких областях, как предиктивное обслуживание оборудования (снижение внеплановых простоев на 30-50%), оптимизация работы промышленных роботов (повышение производительности на 10-25%), интеллектуальное управление запасами (сокращение складских издержек на 20-40%), контроль качества на основе компьютерного зрения (выявление до 90% дефектов). Однако для успешного внедрения ИИ необходимо преодолеть ряд барьеров, в числе которых недостаток качественных данных для обучения моделей, дефицит квалифицированных кадров на стыке ИИ и производства, высокая стоимость решений и интеграции. В среднем внедрение комплексных систем ИИ на производстве занимает от 1 до 3 лет и окупается за 2-5 лет

Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 1
Язык(и): Русский, Английский
Доступ: Всем
Статья: Разработка и апробация интеллектуальных систем управления для повышения производительности технологических процессов

В настоящем исследовании рассматриваются вопросы разработки и апробации интеллектуальных систем управления (ИСУ), нацеленных на повышение производительности различных технологических процессов. Актуальность данной темы обусловлена стремительным развитием информационных технологий и возрастающей потребностью в оптимизации производственных циклов для достижения максимальной эффективности и конкурентоспособности предприятий. Цель работы заключается в исследовании потенциала применения ИСУ для усовершенствования технологических процессов и разработке практических рекомендаций по их внедрению. Материалы и методы исследования включают в себя анализ существующих подходов к проектированию ИСУ, моделирование различных сценариев их функционирования, а также проведение экспериментов на реальных производственных объектах. В частности, были изучены такие методы, как нейронные сети, нечеткая логика, генетические алгоритмы и машинное обучение. Для апробации разработанных ИСУ были выбраны три предприятия различных отраслей промышленности: металлургический завод, нефтеперерабатывающий комплекс и фармацевтическая компания. Результаты исследования показали, что внедрение ИСУ позволяет значительно повысить производительность технологических процессов. Так, на металлургическом заводе удалось сократить время плавки стали на 12%, а расход энергоресурсов – на 8%. На нефтеперерабатывающем комплексе оптимизация работы установки каталитического крекинга привела к увеличению выхода светлых нефтепродуктов на 5,6%. В фармацевтической компании применение ИСУ для управления процессом синтеза активных веществ позволило на 20% снизить количество бракованной продукции и на 15% сократить время производственного цикла. Полученные результаты демонстрируют высокую эффективность использования интеллектуальных систем управления для оптимизации технологических процессов и открывают широкие перспективы для их дальнейшего применения в различных отраслях промышленности.

Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 1
Язык(и): Русский, Английский
Доступ: Всем
Статья: Применение робототехнических систем для автоматизации процессов загрузки и выгрузки хлебобулочных изделий в хлебопечках

В данной статье рассматривается применение робототехнических систем для автоматизации процессов загрузки и выгрузки хлебобулочных изделий в хлебопечках. Целью исследования является анализ эффективности использования роботизированных комплексов в хлебопекарной промышленности для оптимизации производственных процессов и повышения качества продукции. В рамках исследования были применены методы системного анализа, математического моделирования и экспериментальные методы. Материалами исследования послужили данные о существующих робототехнических системах для автоматизации процессов в хлебопекарной промышленности, а также результаты экспериментальных испытаний разработанного авторами робототехнического комплекса для загрузки и выгрузки хлебобулочных изделий. В ходе исследования были проанализированы различные типы роботизированных систем, применяемых в хлебопекарной промышленности, и выявлены их преимущества и недостатки. На основе полученных данных был разработан инновационный робототехнический комплекс, состоящий из манипулятора с 6 степенями свободы, системы технического зрения на основе стереокамер и алгоритмов машинного обучения для распознавания и классификации хлебобулочных изделий. Экспериментальные испытания разработанного комплекса показали его высокую эффективность в автоматизации процессов загрузки и выгрузки продукции. Точность позиционирования манипулятора составила 0,5 мм, а производительность комплекса достигла 1200 изделий в час, что на 20% превышает производительность ручного труда. Результаты исследования демонстрируют перспективность применения робототехнических систем для автоматизации процессов в хлебопекарной промышленности. Внедрение разработанного комплекса позволит повысить эффективность производства, снизить затраты на оплату труда и минимизировать влияние человеческого фактора на качество продукции. Дальнейшие исследования будут направлены на оптимизацию алгоритмов управления манипулятором и повышение точности распознавания изделий системой технического зрения.

Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 1
Загрузил(а): Шэнь Цзяюань
Язык(и): Русский, Английский
Доступ: Всем
Статья: Применение больших данных для анализа и оптимизации рецептур хлебобулочных изделий

Применение технологий больших данных открывает новые возможности для оптимизации рецептур хлебобулочных изделий. Цель данного исследования - разработать методологию анализа больших данных для совершенствования рецептур хлеба и улучшения его потребительских свойств. В работе использованы методы интеллектуального анализа данных (data mining), машинного обучения и статистического моделирования. Эмпирическую базу составили структурированные данные о 2500 образцах хлеба, включающие подробную информацию об ингредиентах, режимах приготовления и результатах лабораторных испытаний. Применение алгоритмов кластеризации позволило выделить 5 устойчивых сочетаний ингредиентов, обеспечивающих оптимальные органолептические и физико- химические показатели готовой продукции. С помощью регрессионного анализа получены математические модели, описывающие влияние ключевых рецептурных факторов на объем и пористость хлеба. Метод опорных векторов использован для прогнозирования реологических характеристик теста в зависимости от состава смеси. Результаты исследования имеют значение для оперативной корректировки параметров технологического процесса и создания инновационных продуктов с заданными свойствами. В перспективе планируется масштабировать разработанную методологию на широкий спектр мучных изделий.

Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 1
Язык(и): Русский, Английский
Доступ: Всем
Статья: Влияние качества данных на эффективность моделей машинного обучения на предприятиях хлебопекарной отрасли в условиях больших данных

В статье исследуется влияние качества данных на эффективность моделей машинного обучения на предприятиях хлебопекарной отрасли в условиях больших данных. Актуальность темы обусловлена растущей ролью аналитики данных в оптимизации хлебопекарного производства и необходимостью обеспечения надежности используемых предиктивных моделей. Цель работы - выявить ключевые параметры качества данных, определяющие точность и практическую применимость моделей машинного обучения в хлебопекарной индустрии. В исследовании использован комплекс методов, включающий статистический анализ массивов производственных данных хлебозаводов, экспертные интервью (n=20) и сравнительное тестирование моделей на разных по качеству обучающих выборках. Установлено, что: 1) полнота, точность и согласованность данных являются ключевыми факторами, влияющими на обобщающую способность моделей; 2) использование предобработки данных (очистка, трансформация) позволяет повысить точность предсказаний выхода хлебобулочных изделий в среднем на 10-15%; 3) модели, обученные на качественных данных, демонстрируют втрое более высокую стабильность на тестовой выборке; 4) качество прогнозирования ключевых показателей процесса хлебопечения у адаптивных моделей может превосходить существующие нормативы на 8-12%. Результаты подтверждают критическую значимость управления качеством данных для реализации потенциала машинного обучения в хлебопекарной индустрии. Предложена методика аудита качества технологических данных хлебозаводов, ориентированная на специфику задач моделирования и оптимизации. Дальнейшие исследования связаны с разработкой инфраструктурных и управленческих решений по обеспечению качества данных в условиях цифровизации хлебопекарного производства.

Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 1
Язык(и): Русский, Английский
Доступ: Всем
Статья: Разработка и внедрение цифровых двойников для оптимизации хлебопекарных линий

Цифровые двойники представляют собой перспективный инструмент для оптимизации производственных процессов, в том числе в хлебопекарной промышленности. Целью данного исследования является разработка и апробация методики создания цифровых двойников хлебопекарных линий для повышения эффективности их функционирования. В работе использован комплекс методов математического моделирования, компьютерного симулирования и машинного обучения. На основе детального анализа технологических процессов и оборудования хлебозавода «ТОНОЯН» построены динамические модели ключевых производственных участков. Проведена серия экспериментов по оптимизации параметров работы жиловочного и тестоприготовительного отделений. Внедрение цифровых двойников на предприятии позволило: 1) снизить расход муки на 2,5% при сохранении качества готовой продукции; 2) повысить производительность линий на 5,7% за счет минимизации простоев; 3) сократить удельное энергопотребление на 4,1%. Предложенный подход может быть масштабирован на хлебопекарные производства различного типа. Для достижения максимального эффекта требуется адаптация моделей к специфике конкретных предприятий и активное вовлечение персонала в процесс цифровой трансформации.

Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 1
Язык(и): Русский, Английский
Доступ: Всем
Статья: Технологии ИНС в задаче спектральной вибродиагностики оборудования хлебопекарного производства

В статье приводятся результаты анализа эффективности метода нейросетевой диагностики зубчатой передачи по амплитудно-частотному составу вибраций подшипникового узла. Натурное моделирование различных технических состояний механической передачи проведено на специально созданном в Российском биотехнологическом университете экспериментальном стенде. Автоматизация процедур измерения, цифровой обработки и анализа вибросигналов с применением технологии ИНС реализована в пакете Матлаб. Результаты исследований показали достоверность определения класса технического состояния зубчатой передачи по значениям амплитуд спектра вибрации порядка 99%. Научные исследования легли в основу создания интеллектуальных компонентов для системы технического мониторинга и диагностики технологических машин хлебопекарного производства.

Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 1
Язык(и): Русский, Английский
Доступ: Всем
Статья: СОВРЕМЕННЫЕ СТРАТЕГИИ ИСПОЛЬЗОВАНИЯ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА ДЛЯ ПРЕДОТВРАЩЕНИЯ АВАРИЙ В ТЕХНИЧЕСКИХ СИСТЕМАХ РЕСУРСОСНАБЖЕНИЯ

АКТУАЛЬНОСТЬ. Значимость внедрения передовых технологий, таких как Интернет вещей (IoT), машинное обучение и искусственный интеллект, в современных условиях повышения требований к надежности и эффективности систем ресурсоснабжения становится всё более очевидной. Способность этих технологий к сбору, обработке и анализу данных в реальном времени открывает новые перспективы для оптимизации работы и предотвращения аварий.

ЦЕЛЬ. Исследование направлено на анализ современных методов и технологий искусственного интеллекта и машинного обучения, применяемых в технических системах, с акцентом на возможности IoT для создания эффективной информационной системы. Эта система предназначена для дальнейшего использования в разработке и обучении моделей, способных к прогнозированию аварий и оптимизации распределения ресурсов.

МЕТОДЫ. В рамках работы был проведен глубокий анализ литературных источников, посвященных применению сверточных и рекуррентных нейронных сетей, алгоритмов градиентного бустинга, моделей многослойного персептрона, методов опорных векторов и K-ближайших соседей в контексте систем водоснабжения. Особое внимание уделялось изучению интеграции технологий IoT для сбора данных, передаваемых через датчики посредством сетей LoRaWAN и базовых станций операторов сотовой связи.

РЕЗУЛЬТАТЫ. В результате исследования было подтверждено, что использование передовых методов искусственного интеллекта в сочетании с технологиями Интернета вещей значительно повышает точность прогнозирования аварий и эффективность управления системами водоснабжения. В статье определена важность создания надежной информационной системы, способной собирать и анализировать большие объемы данных в реальном времени, что является критическим фактором для успешного применения прогностических моделей.

ЗАКЛЮЧЕНИЕ. Исследование подчеркивает значительный потенциал интеграции методов машинного обучения в IoT-инфраструктуру водоснабжения. В статье демонстрируется, что выбор подходящих методов сбора и передачи данных, включая протокол MQTT, играет ключевую роль в создании эффективной информационной базы для обучения моделей. Результаты исследования предоставляют ценную основу для разработки будущих инновационных решений в области управления ресурсами водоснабжения.

Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 1
Загрузил(а): Капанский Алексей
Язык(и): Русский
Доступ: Всем
Статья: Применение преобразования Хафа для определения границы путей в задачах компьютерного зрения аппаратно-программного комплекса фиксации исполненного движения

Цель. При решении задач компьютерного зрения для определения границ детектируемого объекта, как правило, используются методы семантической сегментации, которые требуют высокого вычислительного ресурса. Их использование повышает сложность реализации и увеличивает стоимость решений для внедряемых аппаратно-программных комплексов. В настоящей работе предлагается альтернативный метод определения границы сегментируемого объекта, в виде железнодорожного пути, для комплекса фиксации исполненного движения. Методы. Так как железнодорожный путь на изображении можно представить линией полинома n-порядка, то для решения задачи детектирования границы пути предлагается использовать приближения в виде прямых линий. В качестве метода детектирования прямых линий предлагается использовать преобразование Хафа, параметрическое пространство которого будет скомпоновано в соответствии с решаемой задачей. Заключение. Предложенная аппроксимация позволит отказаться от семантической сегментации и снизит вычислительную сложность нагрузки на аппаратуру.

Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 1
Язык(и): Русский
Доступ: Всем
Книга: АЛГОРИТМИЧЕСКИЕ МОДЕЛИ ОБУЧЕНИЯ КЛАССИФИКАЦИИ

В книге рассматриваются теоретические аспекты машинного обучения класси-фикации. В центре изложения – обучаемость как способность применяемых алгоритмов обеспечивать эмпирическое обобщение. С обучаемостью непосредственно связаны вопросы сложности выборок, точности и надежности классификаторов. Большое внимание уделено алгоритмическим методам анализа процессов обучения и синтеза решающих правил, включая колмогоровский подход, связанный с алгоритмическим сжатием информации. Описаны принципы выбора моделей обучения и семейств классифицирующих алгоритмов в зависимости от постановок и свойств решаемых задач.

Книга предназначается для специалистов, занимающихся теорией машинного обучения; она будет полезной для аспирантов, разработчиков интеллектуализированного программного обеспечения и студентов старших курсов математических специальностей, специализирующихся в указанной области.

Формат документа: pdf
Год публикации: 2014
Кол-во страниц: 228
Загрузил(а): Афонин Сергей
Доступ: Всем