SCI Библиотека

SciNetwork библиотека — это централизованное хранилище... ещё…

Результаты поиска: 213 док. (сбросить фильтры)
Статья: ОЦЕНИВАНИЕ ИНФОРМАТИВНОСТИ ПРИЗНАКОВ В НАБОРАХ ДАННЫХ ДЛЯ ПРОВЕДЕНИЯ ПРОДЛЁННОЙ АУТЕНТИФИКАЦИИ

Продлённая аутентификация позволяет избавиться от недостатков, присущих статической аутентификации, например, идентификаторы могут быть потеряны или забыты, пользователь совершает только первоначальный вход в систему, что может быть опасно не только для областей, требующих обеспечения высокого уровня безопасности, но и для обычного офиса. Динамическая проверка пользователя во время всего сеанса работы может повысить безопасность системы, поскольку во время работы пользователь может подвергнуться воздействию со стороны злоумышленника (например, быть атакованным) или намеренно передать ему права. В таком случае оперировать машиной будет не пользователь, который выполнил первоначальный вход. Классификация пользователей во время работы системы позволит ограничить доступ к важным данным, которые могут быть получены злоумышленником. Во время исследования были изучены методы и наборы данных, использующихся для продлённой аутентификации. Затем был сделан выбор наборов данных, которые использовались в дальнейшем исследовании: данные о движении смартфона и смарт-часов (WISDM) и динамике активности мыши (Chao Shen’s, DFL, Balabit). Помочь улучшить результаты работы моделей при классификации может предварительный отбор признаков, например, через оценивание их информативности. Уменьшение размерности признаков позволяет снизить требования к устройствам, которые будут использоваться при их обработке, повысить объём перебора значений параметров классификаторов при одинаковых временных затратах, тем самым потенциально повысить долю правильных ответов при классификации за счёт более полного перебора параметров значений. Для оценивания информативности использовались метод Шеннона, а также алгоритмы, встроенные в программы для анализа данных и машинного обучения (WEKA: Machine Learning Software и RapidMiner). В ходе исследования были выполнены расчёты информативности каждого признака в выбранных для исследования наборах данных, затем с помощью RapidMiner были проведены эксперименты по классификации пользователей с последовательным уменьшением количества используемых при классификации признаков с шагом в 20%. В результате была сформирована таблица с рекомендуемыми наборами признаков для каждого набора данных, а также построены графики зависимостей точности и времени работы различных моделей от количества используемых при классификации признаков.

Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 1
Загрузил(а): Давыденко Сергей
Язык(и): Русский, Английский
Доступ: Всем
Статья: СИСТЕМА АНАЛИЗА ТОНАЛЬНОСТИ ТЕКСТА НА ТЕЛУГУ НА ОСНОВЕ НОВОГО ПАССИВНО-АГРЕССИВНОГО КЛАССИФИКАТОРА С НЕЧЕТКИМ ВЗВЕШИВАНИЕМ

Обработка естественного языка (NLP) - это разновидность искусственного интеллекта, демонстрирующая, как алгоритмы могут взаимодействовать с людьми на их уникальных языках. Кроме того, анализ настроений в NLP лучше проводится во многих программах, включая оценку настроений на телугу. Для обнаружения текста на телугу используются несколько неконтролируемых алгоритмов машинного обучения, таких как кластеризация k-средних с поиском с кукушкой. Однако эти методы с трудом справляются с кластеризацией данных с переменными размерами и плотностью кластеров, низкой скоростью поиска и плохой точностью сходимости. В ходе этого исследования была разработана уникальная система анализа настроений на основе машинного обучения для текста на телугу, позволяющая устранить указанные недостатки. Первоначально, на этапе предварительной обработки, предлагаемый алгоритм линейного преследования (LPA) удаляет слова в пробелах, знаках препинания и остановках. Затем для маркировки POS в этом исследовании было предложено условное случайное поле с лексическим взвешиванием; После этого предлагается надуманный пассивно-агрессивный классификатор с нечетким взвешиванием (CPSC-FWC) для классификации настроений в тексте на телугу. Следовательно, предлагаемый нами метод дает эффективные результаты с точки зрения точности, воспроизводимости и показателя f1.

Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 1
Загрузил(а): Найду Дж
Язык(и): Русский, Английский
Доступ: Всем
Статья: АНАЛИТИЧЕСКИЙ ОБЗОР МЕТОДОВ АВТОМАТИЧЕСКОГО АНАЛИЗА ЭКСТРАЛИНГВИСТИЧЕСКИХ КОМПОНЕНТОВ СПОНТАННОЙ РЕЧИ

Точность систем автоматического распознавания спонтанной речи далека от тех, которые демонстрируют системы распознавания подготовленной речи. Обусловлено это тем, что спонтанная речь не характеризуется той плавностью и отсутствием сбоев, что подготовленная. Спонтанная речь варьируется от диктора к диктору: отличное произношение фонем, наличие пауз, речевых сбоев и экстралингвистических компонентов (смех, кашель, чихание, и цыканье при выражении эмоции раздражения и др.) прерывают плавность вербальной речи. Экстралингвистические компоненты очень часто несут важную паралингвистическую информацию, поэтому для систем автоматического распознавания спонтанной речи важно распознавать подобные явления в потоке речи. В данном обзоре проанализированы научные работы, посвященные проблеме автоматического анализа экстралингвистических компонентов спонтанной речи. Рассмотрены и описаны как отдельные методы и подходы по распознаванию экстралингвистических компонентов в потоке речи, так и работы, связанные с многоклассовой классификацией изолированно записанных экстралингвистических компонентов. Наиболее распространенными методами анализа экстралингвистических компонентов являются нейронные сети, такие как глубокие нейронные сети и сети на основе моделей-трансформеров. Приведены основные понятия, относящиеся к термину экстралингвистические компоненты, предложена оригинальная систематизация экстралингвистических компонентов в русском языке, описаны корпуса и базы данных звучащей разговорной речи как на русском, так и на других языках, также приведены наборы данных экстралингвистических компонентов, записанных изолированно. Точность распознавания экстралингвистических компонентов повышается при соблюдении следующих условия работы с речевым сигналом: предобработка аудиосигналов вокализаций показала повышение точности классификации отдельно записанных экстралингвистических компонентов; учет контекста (анализ нескольких фреймов речевого сигнала) и использовании фильтров для сглаживания временных рядов после извлечения векторов признаков показали повышение точности при пофреймовом анализе речевого сигнала со спонтанной речью.

Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 1
Язык(и): Русский
Доступ: Всем
Статья: АНАЛИЗ ФИНАНСОВЫХ РЫНКОВ НА ОСНОВЕ МОДЕЛЕЙ МАТЕМАТИЧЕСКОГО ПРОГРАММИРОВАНИЯ

Данное исследование охватывает развитие методов математического анализа фондовых рынков с использованием подходов машинного обучения и моделей математического программирования. В рамках исследования описана модель частично-целочисленного линейного программирования для решения задач бинарной классификации с наложением дополнительных условий на число используемых признаков модели и стабильности качества модели во времени. Данная модель реализует комитетный подход к решению задач классификации. Эффективность предложенной модели представлена на примере решения задачи прогнозирования моментов для покупки или продажи акций ПАО «Сбербанк» на основе биржевых данных за период с августа 2007 по май 2023 г. Полученные результаты торговой стратегии позволяют говорить о том, что предложенная модель имеет низкий риск получения убытков на периоде в 1 год, что подтверждается отсутствием периодов с метрикой Accuracy менее 50 %, а также оценкой потенциальных доходов, которая на всех годовых периодах была выше 10 %. Проведенное исследование подчеркивает значимость интеграции математического программирования и машинного обучения для повышения точности и эффективности торговых стратегий на фондовых рынках. Данная работа может представлять интерес для профессиональных трейдеров, исследователей данных, студентов экономических и технических специальностей, а также всех лиц заинтересованных в теме инвестиций и машинного обучения.

Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 1
Язык(и): Русский, Английский
Доступ: Всем
Статья: Диагностика и оценка тяжести болезни Альцгеймера: алгоритмы машинного обучения на основе маркеров воспаления

Обоснование: болезнь Альцгеймера (БА) как наиболее распространенная форма деменции характеризуется ухудшением познавательных функций и обычно начинается с потери памяти о недавних событиях. Важен поиск биологических методов, чувствительных и доступных, которые можно было бы использовать для ранней диагностики БА и определения тяжести заболевания.
Цель исследования: разработка алгоритмов машинного обучения (МО) на основе таких воспалительных маркеров, как энзиматическая активность лейкоцитарной эластазы (ЛЭ) и функциональная активность α1-протеиназного ингибитора (α1-ПИ) для диагностики и оценки тяжести БА.
Пациенты и методы: в исследование включены 128 человек в возрасте от 55 до 94 лет (73,7 ± 7,9 года), из которых 91 пациент с диагнозом болезни Альцгеймера и 37 условно здоровых людей (контроль). В качестве классифицирующих признаков для построения моделей рассматривали показатели ЛЭ и α1-ПИ в плазме крови. Для построения модели машинного обучения применяли следующие алгоритмы: метод оптимально достоверных разбиений (Optimal Valid Partition, OVP), логистическая регрессия (LR), метод опорных векторов (SVM), случайный лес (RF), градиент бустинга (GB) и метод статистически взвешенных синдромов (МСВС). Был использован программный пакет Data Master Azforus. Прогностическую эффективность построенных классификаторов оценивали по общей точности (аccuracy), чувствительности (sensitivity), специфичности (specicity), F-мере и ROC-анализу.
Результаты: созданные алгоритмы машинного обучения позволили надежно разделить общую группу исследуемых (пациенты + условно здоровые), а также пациентов с различной тяжестью БА на 4 квадранта двумерной диаграммы в координатах ЛЭ и α1-ПИ и показали близкую и достаточно высокую прогностическую эффективность.
Заключение: разработанные алгоритмы машинного обучения оказались высокоэффективными в оценке тяжести БА на основе воспалительных маркеров (энзиматической активности ЛЭ и функциональной активности α1-ПИ) и могут быть полезными для ранней диагностики заболевания и своевременного назначения терапии.

Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 1
Загрузил(а): Андросова Любовь
Язык(и): Русский
Доступ: Всем
Статья: Анализ ЭЭГ покоя при шизофрении: от снижения альфа-ритма до оценки микросостояний

Обоснование: в связи с разработкой в последние годы новых технологий анализа ЭЭГ появилось много новых работ в этой области, в том числе исследующих параметры ЭЭГ при шизофрении.
Цель обзора: изучить данные современных исследований о возможностях оценки записи ЭЭГ покоя для диагностики и прогнозирования течения шизофрении.
Материал и методы: отбор публикаций проводился в базах eLibrary, PubMed, Google Scholar и CNKI с использованием ключевых слов: «психоз», «шизофрения», «ЭЭГ», «состояние покоя». Методологически работа представляет собой описательный (нарративный) обзор литературы. Для анализа было отобрано 33 источника.
Обсуждение и заключение: по имеющимся к настоящему времени данным, качественная и количественная оценка ЭЭГ покоя не может использоваться для инструментальной диагностики шизофрении, так как регистрируемое при этом чаще всего увеличение доли медленноволновой активности наблюдается при различных психических расстройствах. При этом некоторые количественные спектральные оценки ЭЭГ покоя могут быть использованы для определения прогноза негативного ответа на терапию антипсихотиками, а также для объективной оценки динамики состояния. Оценки мощности медленных ритмов ЭЭГ покоя и другие методы анализа связанности различных нейронных сетей можно рассматривать как способы выявления потенциальных маркеров наличия специфического эндофенотипа. Современные цифровые технологии, включая алгоритмы машинного обучения и искусственного интеллекта, позволяют за счет использования сложных математических моделей производить дифференциацию ЭЭГ покоя больных шизофренией и здоровых лиц с точностью, чувствительностью и специфичностью более 95%. Оценка микросостояний ЭЭГ дает возможность судить о функционировании крупных нейронных ансамблей и может стать одним из способов характеристики эндофенотипа шизофрении.




Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 1
Загрузил(а): Федотов Илья
Язык(и): Русский
Доступ: Всем
Статья: Опыт применения машинного обучения для прогнозирования ответа яичников на овариальную стимуляцию у пациентов в программе ВРТ

Одним из важнейших этапов программы ВРТ является проведение овариальной стимуляции с целью получения оптимального числа зрелых ооцитов. Предикция ответа яичников на стимуляцию при помощи машинного обучения может быть осуществлена с использованием различных алгоритмов в зависимости от типа данных и поставленной задачи. В исследовании были проанализированы клинико- лабораторные данные пациенток в зависимости от количества зрелых ооцитов, полученных в ходе пункции, при помощи линейной регрессии и решающего дерева. Использование точных прогностических систем с большим объемом выборки, а также дополнительных математических подходов позволит повысить количество ооцитов, получаемых в ходе пункции за счет оптимизации наиболее значимых корригируемых факторов.

Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 1
Язык(и): Русский
Доступ: Всем
Статья: КЛАССИФИКАЦИЯ ТИПОВ СУБСТРАТОВ ДНА ПО ДАННЫМ С МНОГОЛУЧЕВОГО ЭХОЛОТА С ПРИМЕНЕНИЕМ ТЕХНОЛОГИИ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА И МАШИННОГО ОБУЧЕНИЯ

В статье рассматривается вопрос применения нейронных сетей для автоматизации процесса классификации типов субстратов дна, представлено описание традиционных методов классификации, приведены примеры успешного применения нейронных сетей в смежных задачах, проанализированы методы обработки изображений на разных стадиях. Составлена и описана схема процесса обработки данных с применением нейронных сетей для повышения качества классификации.

Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 1
Загрузил(а): Васильев Д.
Язык(и): Русский, Английский
Доступ: Всем
Статья: НЕЙРОСЕТЕВАЯ МОДЕЛЬ В ИНФОРМАЦИОННОЙ ВОПРОСНО-ОТВЕТНОЙ СИСТЕМЕ

Введение: многочисленные исследования говорят о том, что современные крупные нейронные сети, как правило, имеют избыточное количество параметров. Целью работы является обучение и оптимизация модели “ruBERT” для применения в информационных вопросно-ответных системах на русском языке. Научная новизна работы состоит в экспериментальном исследовании различных методов прореживания модели “ruBERT” при дообучении на наборе данных “SberQuAD”.
Методы: в настоящей работе используются методы обработки естественного языка, машинного обучения, прореживания искусственных нейронных сетей. Языковая модель была настроена и дообучена при помощи библиотек машинного обучения “Torch” и “Hugging Face”. Для обучения нейронных сетей использовался набор данных “SberQuAD”. Все эксперименты проводились при помощи сервисов “Google Colab” и “Google Cloud”.
Результаты: было обнаружено, что удаление ~54% от числа весов кодировщика модели “ruBERT” (~39 миллионов параметров) приводит к незначительным ухудшениям в результатах работы модели: с 67,31 до 63,28 для показателя EM и с 85,47 до 82,48 для показателя F-мера. Полученные результаты говорят о том, что модель “ruBERT” содержит избыточное количество весов для задачи “извлечение ответа на вопрос”. Для эффективного применения данной модели в информационных вопросно-ответных системах на русском языке необходимо проводить её компрессию и оптимизацию. Оптимизированная модель может работать на менее мощном оборудовании без значимых потерь в производительности, что приводит к уменьшению затрат на поддержание информационных вопросно-ответных систем, в которых применяется данная модель.


Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 1
Язык(и): Русский
Доступ: Всем
Статья: Построение коллаборативной рекомендательной системы на основе сингулярного разложения матрицы

В данной статье описывается процесс реализации такого метода машинного обучения, как рекомендательная система; рассматривается построение коллаборативной рекомендательной системы, в основе которой лежит алгоритм сингулярного разложения или сингулярной декомпозиции матрицы. Описаны процесс сбора тестовых данных, их обработки, а также обучение модели и её оценка согласно некоторым метрикам.

Формат документа: pdf
Год публикации: 2023
Кол-во страниц: 1
Загрузил(а): Гришанов Я.И.
Язык(и): Русский
Доступ: Всем