В настоящей работе приведены экспериментальные исследования влияния режимов МОСгидридной эпитаксии на структурные и электрофизические свойства гетероструктур InGaAs/InP. Выбранные режимы использовались для выращивания приборных структур, на которых изготовлены планарные лавинные фотодиоды. По результатам измерения их фотоэлектрических характеристик был сделан вывод о возможности использования разработанных структур для изготовления планарных лавинных фотодиодов.
Рассмотрена возможность создания диода с барьером Шоттки на GaP с низкой высотой барьера для реализации возможности работы в качестве обнаружителя мощных оптических сигналов в среднем ИК-диапазоне. Были проведены исследования влияния увеличения концентрации носителей заряда в области контакта на высоту барьера. В структуру GaP n- и pтипа проводимости были имплантированы различные ионы при разных дозах и энергиях с последующим отжигом в течении 60 минут при температуре 700 оС в азотной среде. Были исследованы CV-характеристики образцов, по результатам которых были определены высоты барьеров. Полученные результаты подтвердили теоретические расчёты. В работе показано, что необходимое снижение высоты барьера «металл–полупроводник» для сдвига спектральной чувствительности GaP в инфракрасную область, может быть получено путем подлегирования контактной области эпитаксиального слоя n-типа проводимости ионами Si с энергией 100 кэВ и дозой (флюенсом) 41014 см-2 с последующим отжигом имплантированного слоя в течении 60 минут в атмосфере N2 при температуре 700 °С. В качестве барьерного металла может быть использована золотая плёнка, напылённая в вакууме. Результаты исследования показали, что увеличения концентрации носителей заряда в области контакта до значений около 1019 см-3 даёт возможность снижения высоты барьера Au-n-GaP до 0,2 эВ.
В данной статье говорится о допустимых отклонениях глубины диффузии, выборе оптимального типа эпитаксиальных структур для изготовления лавинных InGaAs/InP-фотодиодов. При изготовлении ЛФД особое внимание уделяется созданию определённой конфигурации электрического поля в структуре. Конфигурация электрического поля в структуре зависит от исходных параметров структуры и от процессов диффузии. Отклонения от параметров приводят к неработоспособности ЛФД. Было представлено два типа структуры: тип 1 – с равномерным легированием лавинной области (треугольное поле) и тип 2 – с пиковым легированием лавинной области (прямоугольное поле). Указанные эпитаксиальные структуры выращивались методом МОС-гидридной эпитаксии. Типичные параметры структуры типа 1: лавинная область n-InP толщиной 3,9 мкм и уровнем легирования 1,71016 см-3, область поглощения n-InGaAs толщиной 2,35 мкм и уровнем легирования не более 11015 см-3. Типичные параметры структуры типа 2: лавинная область n-InP толщиной 3,6 мкм и уровнем легирования не более 11015 см-3 зарядная область n+-InP толщиной 0,3 мкм и уровнем легирования 8,51016 см-3, область поглощения n-InGaAs толщиной 2,1 мкм и уровнем легирования не более 11015 см-3. В обеих структурах p–n-переход создавался в лавинной области n-InP методом диффузии цинка. Для каждой структуры при различных глубин p–n-перехода, создаваемого диффузией, рассчитывалось напряжение, при котором обеспечивался коэффициент умножения равный 10. Структура типа 1 работоспособна в диапазоне глубин p–n-перехода х0 = (1,77– 2,18) мкм при рабочих напряжениях (56–75) В. Допустимый разброс х0 = 0,41 мкм ( 10 %). Структура типа 2 работоспособна в диапазоне глубин p–n-перехода х0 = (2,50–3,40) мкм при рабочих напряжениях (49–61) В. Допустимый разброс х0 = 0,90 мкм ( 15 %). При изготовлении InGaAs/InP ЛФД структура с пиковым легированием в лавинной области (тип 2) обладает большей технологической устойчивостью по сравнению со структурой с равномерным легированием лавинной области (тип 1). Допустимые отклонения по глубинам p–n-перехода составляют ( 15 %) для структуры типа 2, и ( 10 %) для структуры типа 1.
В данной статье приводятся методики расчета разностной дозы примеси Qа и ее контроля при планарной технологии изготовления лавинных фотодиодов (ЛФД) на основе гетероэпитаксиальных структур InGaAs/InP. Разработанные методики контроля разностной дозы в лавинных InGaAs/InP структурах использовались на различных этапах изготовления ЛФД. Показана необходимость более жесткого контроля доз концентрации производителем эпитаксиальных структур, согласования методик их измерения, коррекции диффузионных процессов под конкретные дозы примесей.
Исследованы возможности повышения уровня чувствительности p–i–n-фотодиодов к излучению с длиной волны λ = 1,06 мкм. Проведён расчёт двухслойного просветляющего покрытия, состоящего из плёнок SiO2 и Si3N4. Представлены результаты эксперимента, проведённого на основании данного расчёта.