В работе представлены результаты измерений эквивалентного сопротивления плазмы в высокочастотном индуктивном источнике плазмы диаметром 46 см при изменении величины индукции внешнего магнитного поля от 0 до 50 Гс, выполненные на рабочих частотах 2, 4 и 13,56 МГц и фиксированной мощности ВЧ-генератора в диапазоне 100–500 Вт. Эксперименты проводились с использованием аргона в диапазоне давлений 0,1–30 мТорр. При наложении внешнего магнитного поля были обнаружены области резонансного поглощения ВЧмощности, соответствующие условиям резонансного возбуждения связанных между собой геликонов и косых ленгмюровских волн. Показано, что наложение на разряд внешнего магнитного поля, соответствующего областям резонансного поглощения ВЧ-мощности при рабочих частотах более 2 МГц, позволяет оптимизировать поглощение ВЧ-мощности плазмой. Эффект увеличивается с ростом рабочей частоты.
В работе представлены результаты измерений радиального распределения ионного зондового тока насыщения в высокочастотном индуктивном источнике плазмы диаметром 46 см при изменении величины индукции внешнего магнитного поля В от 0 до 50 Гс, выполненные на рабочих частотах 2, 4 и 13,56 МГц и фиксированной мощности ВЧ-генератора в диапазоне 100– 500 Вт. В качестве рабочего газа использовался аргон, давление которого изменялось от 0,1 до 30 мТорр. Показано, что наложение внешнего магнитного поля позволяет управлять радиальным распределением зондового ионного тока насыщения. Выявлены оптимальные условия создания протяженных участков однородной плазмы диаметром более 30 см.
В настоящей работе изучены эффективность поглощения высокочастотной (ВЧ) мощности плазмой и структура возбуждаемых волн в индуктивных ВЧ-источниках плазмы (ИП) диаметром 20 см и длиной – 20, 32 и 52 см при наличии внешнего магнитного поля 10–65 Гс. Измерения выполнены в аргоне в диапазоне давлений 0,1–2,3 мТорр и мощностях ВЧгенератора 0–1000 Вт. Для возбуждения индуктивного разряда использовалась соленоидальная антенна. Параллельно с индуктивным каналом в разряде был организован канал постоянного тока, сформированный двумя электродами, расположенными на торцах цилиндрического источника плазмы. Показано, что при давлении аргона менее 1 мТорр и мощностях ВЧ-генератора менее 800 Вт во всех трех рассмотренных ИП эффективность вложения ВЧ-мощности немонотонно зависит от магнитного поля. Измерение аксиального распределения продольной и азимутальной компонент магнитного ВЧ-поля показало, что при магнитных полях более 10 Гс в ИП формируется частично стоячая волна. Положение локальных максимумов азимутальной и продольной компонент ВЧ-поля сдвинуты друг относительно друга по продольной координате. Число полуволн, укладывающихся на длине источника плазмы, зависит от величины индукции внешнего магнитного поля и длины ИП. При подаче между электродами напряжения 100 В амплитуда продольной и азимутальной компонент магнитного ВЧ-поля возрастает, что связано с увеличением коэффициента отражения волны на границе ИП.
Выполнено математическое моделирование гибридного разряда на основе высокочастотного емкостного разряда с постоянной составляющей, помещенного в магнитное поле с преимущественной радиальной компонентой. Геометрия рассмотренного источника плазмы близка к ускорителю с замкнутым дрейфом электронов. Показано, что рядом с активным электродом и на срезе канала возникают квазистационарные скачки потенциала, ускоряющие ионы в сторону активного электрода и в направлении из канала. В области скачков потенциала возникает азимутальный дрейф электронов. Наличие постоянного смещения активного электрода приводит к повышению потенциала плазмы и увеличению энергии ионов на выходе из канала.
В настоящей работе изучены характеристики разряда, основанного на комбинации индуктивного высокочастотного (ВЧ) разряда и разряда постоянного тока. Исследованы закономерности вложения ВЧ-мощности в плазму, выполнены измерения азимутальной B и продольной Bz составляющих высокочастотного магнитного поля, аксиального распределения концентрации и температуры электронов, потенциала пространства. В качестве объекта исследования использован однокамерный цилиндрический источник плазмы диаметром 20 см. Канал постоянного тока сформирован двумя электродами, расположенными на торцах цилиндрического источника плазмы. Измерения выполнены в аргоне в диапазоне давлений 0,1–2,3 мТорр при значениях индукции внешнего магнитного поля 0–60 Гс и мощностях ВЧ-генератора 0–1000 Вт. Показано, что при появлении канала постоянного тока потенциал плазмы понижается по сравнению с чисто индуктивным разрядом. При подаче между электродами напряжения 100 В амплитуда продольной и азимутальной компонент магнитного ВЧ-поля возрастает, что связано с увеличением коэффициента отражения волны на границе источника плазмы.
Экспериментально исследованы функции распределения ионов по энергиям на выходе из гибридного разряда, основанного на комбинации емкостного ВЧ-разряда и разряда постоянного тока, в источнике плазмы с геометрией ускорителя с замкнутым дрейфом электронов. Показано, что наличие постоянного смещения активного электрода сопровождается увеличением энергии и плотности ионов на срезе ускорителя. Изменение мощности, вводимой в разряд через ВЧ-канал, и величины постоянного смещения, подводимого к активному электроду через канал постоянного тока, позволяют независимо управлять энергией и плотностью потока ионов.
Экспериментально исследованы вольт-амперная характеристика и импеданс гибридного разряда, основанного на комбинации емкостного ВЧ-разряда и разряда постоянного тока, в источнике плазмы с геометрией ускорителя с замкнутым дрейфом электронов. Показано, что наличие ВЧ-составляющей приводит к расширению области существования разряда по сравнению с режимом постоянного тока. Наличие постоянного смещения активного электрода сопровождается уменьшением мнимой и ростом действительной частей импеданса разряда.
Настоящая работа посвящена исследованию влияния режимов напыления на свойства функциональных покрытий в плазменном реакторе, основанном на распылительном источнике (магнетроне) и индуктивном ВЧ-разряде с внешним магнитным полем, являющимся источником потока ассистирующих ионов. Получены образцы функциональных покрытий, изготовленных при работе только распылительного источника и при совместной работе распылительного и плазменного источников. Проведено сравнение свойств таких покрытий. Представлены результаты напыления пленок из титана. Получено, что с ростом величины потока ассистирующих ионов, который определялся мощностью ВЧ-генератора, увеличивается удельное сопротивление пленок титана, а также их микротвердость. Показано, что облучение пленок потоком ускоренных ионов приводит к уменьшению размера зерна напыляемых покрытий, а также к уменьшению содержания примесей.
RU“>Изучены характеристики модели ВЧ индуктивного ионного двигателя, работающего на азоте и кислороде, при наложении на разряд внешнего продольного магнитного поля с индукцией не более 75 Гс. Экспериментально показано, что наибольший ток ионов удается получить, используя магнитные поля с индукцией 18 и 70 Гс. В рабочем диапазоне f = 10–25 см3/мин для тока 200 мА цена иона, рассчитанная на основании значений мощности ВЧ-генератора, составляет величину 1400–1500 Вт/А. Оценка цены иона по величине вложенной в плазму мощности позволяет определить минимально возможную для рассматриваемого прототипа ВЧ ионного двигателя величину цены иона в 850 Вт/А.
Экспериментально исследовано аксиальное распределение потенциала плазмы, концентрации и температуры электронов в ВЧ емкостном источнике плазмы, имеющем геометрию ускорителя с замкнутым дрейфом электронов. Рассмотрены два случая организации внешней электрической цепи разряда. В первом случае электроды замыкались по постоянному току, во втором – размыкались. Показано, что замыкание электродов по постоянному току приводит к существенному росту потенциала плазмы и концентрации электронов. Вблизи электродов в ряде случаев наблюдаются локальные максимумы температуры и плотности плазмы, которые могут быть связаны с возникновением азимутального дрейфа электронов в скрещенных электрическом и магнитном полях.
Представлены первые результаты экспериментального исследования характеристик катода-нейтрализатора, рабочий процесс которого основан на индуктивном ВЧ-разряде в аргоне. Рассмотрен диапазон расходов аргона 4–10 см3/мин, диапазон мощностей ВЧ-генератора 35–150 Вт. Показано, что при достижении порогового значения напряжения между коллектором ионов и положительно заряженным относительно коллектора электродом (анодом) наблюдается скачкообразный рост электронного тока.
Экспериментально рассмотрен импульсный ВЧ-разряд как рабочий процесс сеточного ВЧ ионного источника. Показано, что при работе на таком разряде может быть получен прирост ионного тока по сравнению с непрерывным режимом работы. Этот прирост тем больше, чем больше разница между характерным временем падения ионного тока после выключения ВЧ-мощности и временем нарастания ионного тока при включении ВЧ-мощности. Оценены параметры пульсаций, при которых достигается максимизация ионного тока. Показано, что внешнее постоянное продольное магнитное поле в диапазоне 0–7,2 мТ немонотонно влияет на максимальное и равновесное значение ионного тока в импульсе, при этом темпы падения ионного тока после выключения ВЧ-мощности не изменяются.