Экспериментально показано, что при достижении ВЧ-генератором мощности 500 Вт и магнитных полях более 10 Гс в цилиндрическом индуктивном источнике плазмы с внешним магнитным полем формируется волновая структура. В области расположения антенны продольная составляющая ВЧ магнитного поля достигает максимума у стенок источника плазмы, в то время как на расстояниях от антенны более 10 см максимум поля наблюдается на оси источника. Одновременно по мере удаления от антенны формируется явно выраженный пик радиального распределение зондового ионного тока насыщения на оси источника плазмы.
В работе представлены результаты измерений эквивалентного сопротивления плазмы в высокочастотном индуктивном источнике плазмы диаметром 46 см при изменении величины индукции внешнего магнитного поля от 0 до 50 Гс, выполненные на рабочих частотах 2, 4 и 13,56 МГц и фиксированной мощности ВЧ-генератора в диапазоне 100–500 Вт. Эксперименты проводились с использованием аргона в диапазоне давлений 0,1–30 мТорр. При наложении внешнего магнитного поля были обнаружены области резонансного поглощения ВЧмощности, соответствующие условиям резонансного возбуждения связанных между собой геликонов и косых ленгмюровских волн. Показано, что наложение на разряд внешнего магнитного поля, соответствующего областям резонансного поглощения ВЧ-мощности при рабочих частотах более 2 МГц, позволяет оптимизировать поглощение ВЧ-мощности плазмой. Эффект увеличивается с ростом рабочей частоты.
В работе представлены результаты измерений радиального распределения ионного зондового тока насыщения в высокочастотном индуктивном источнике плазмы диаметром 46 см при изменении величины индукции внешнего магнитного поля В от 0 до 50 Гс, выполненные на рабочих частотах 2, 4 и 13,56 МГц и фиксированной мощности ВЧ-генератора в диапазоне 100– 500 Вт. В качестве рабочего газа использовался аргон, давление которого изменялось от 0,1 до 30 мТорр. Показано, что наложение внешнего магнитного поля позволяет управлять радиальным распределением зондового ионного тока насыщения. Выявлены оптимальные условия создания протяженных участков однородной плазмы диаметром более 30 см.
В настоящей работе изучены характеристики разряда, основанного на комбинации индуктивного высокочастотного (ВЧ) разряда и разряда постоянного тока. Исследованы закономерности вложения ВЧ-мощности в плазму, выполнены измерения азимутальной B и продольной Bz составляющих высокочастотного магнитного поля, аксиального распределения концентрации и температуры электронов, потенциала пространства. В качестве объекта исследования использован однокамерный цилиндрический источник плазмы диаметром 20 см. Канал постоянного тока сформирован двумя электродами, расположенными на торцах цилиндрического источника плазмы. Измерения выполнены в аргоне в диапазоне давлений 0,1–2,3 мТорр при значениях индукции внешнего магнитного поля 0–60 Гс и мощностях ВЧ-генератора 0–1000 Вт. Показано, что при появлении канала постоянного тока потенциал плазмы понижается по сравнению с чисто индуктивным разрядом. При подаче между электродами напряжения 100 В амплитуда продольной и азимутальной компонент магнитного ВЧ-поля возрастает, что связано с увеличением коэффициента отражения волны на границе источника плазмы.
Настоящая работа посвящена исследованию влияния режимов напыления на свойства функциональных покрытий в плазменном реакторе, основанном на распылительном источнике (магнетроне) и индуктивном ВЧ-разряде с внешним магнитным полем, являющимся источником потока ассистирующих ионов. Получены образцы функциональных покрытий, изготовленных при работе только распылительного источника и при совместной работе распылительного и плазменного источников. Проведено сравнение свойств таких покрытий. Представлены результаты напыления пленок из титана. Получено, что с ростом величины потока ассистирующих ионов, который определялся мощностью ВЧ-генератора, увеличивается удельное сопротивление пленок титана, а также их микротвердость. Показано, что облучение пленок потоком ускоренных ионов приводит к уменьшению размера зерна напыляемых покрытий, а также к уменьшению содержания примесей.
Представлены устройства для прямого измерения потенциала плазмы и плавающего потенциала в газовом разряде в системе реактивного ионно-плазменного травления.
В основе действия разработанных для этого устройств лежит создание локального магнитного поля, позволяющего целенаправленно менять условия амбиполярной диффузии заряженных частиц. Это дает возможность осуществлять выравнивание потенциалов зонда и тела положительного столба плазмы. Проведено сравнение результатов измерения потенциала плазмы предлагаемым и альтернативным методами.
Тонкие пленки нитрида кремния широко применяются как в микроэлектронике, так и в оптических и оптоэлектронных приборах. Для получения пленок Si3N4 используются такие методы как химическое осаждение из газовой фазы и магнетронное напыление. В работе представлены результаты исследований по контролю над ростом и оптическими свойствами пленок Si3N4 устройством, работа которого основана на возбуждении поверхностного плазмонного резонанса и позволяет активно влиять на процесс роста нитридной пленки.