Согласно современным представлениям, основу интеллектуальных проблем при нейрологических повреждениях мозга составляет активное забывание, регулируемое зависимыми от малых ГТФаз Rac и Rho сигнальными каскадами ремоделирования актина. Ключевой фермент этих каскадов – LIM-киназа 1 (LIMK1). Изменения экспрессии гена limk1 приводят к нейрокогнитивным патологиям. Для экспресс-скрининга и тестирования агентов целенаправленного терапевтического воздействия, изменяющих белок-белковые взаимодействия ГТФаз и компонентов сигнальных каскадов, необходимо создание и валидация простых животных моделей. Такую возможность предоставляет дрозофила, мутантные линии которой позволяют выявить узловые моменты пересечений биохимических и нервных сетей, сопровождающие активное забывание.
Идентификаторы и классификаторы
- SCI
- Биология
Познание механизмов формирования памяти является актуальной проблемой нейробиологии уже несколько десятков лет. Однако только в последние годы на первый план выходит стремление понять, какую роль в становлении и сохранении памяти играет активное забывание [85].
Список литературы
1. Берлов Д.Н., Никитина Е.А. Функциональные ансамбли в мозге человека и животных // Физиология человека. 2021. Т. 47. № 5. С. 118. DOI: 10.31857/S0131164621050039 EDN: UZDKRU
2. Журавлев А.В., Никитина Е.А., Савватеева-Попова Е.В. Обучение и память у дрозофилы: физиолого-генетические основы // Успехи физиол. наук. 2015. Т. 46. № 1. С. 76. EDN: TOESPJ
3. Заломаева Е.С., Фалина В.С., Медведева А.В., Никитина Е.А., Савватеева-Попова Е.В. Обучение и забывание у Drosophila melanogaster при полиморфизме по гену limk1 // Интегративная физиология. 2021. Т. 2. № 3. С. 318. DOI: 10.33910/2687-1270-2021-2-3-318-327 EDN: CQQVGE
4. Каминская А.Н., Медведева А.В. LIM-киназа 1 в регуляции когнитивных и локомоторных и функций Drosophila melanogaster // Экологическая генетика. 2013. Т. 11. № 3. С. 63. EDN: RRUMKN
5. Каминская А.Н., Никитина Е.А., Герасименко М.С. и др. Обучение и формирование памяти в сопоставлении с распределением pCREB и белковых агрегатов в нейромышечных контактах у Drosophila melanogaster при полиморфизме limk1 // Генетика. 2015. Т. 51. № 6. С. 685. DOI: 10.7868/S0016675815060077 EDN: TXUGOH
6. Каминская А.Н., Никитина Е.А., Паялина Т.Л. и др. Влияние соотношения изоформ LIMK1 на поведение ухаживания Drosophila melanogaster: комплексный подход // Экологическая генетика. 2011. Т. 9. № 4. С. 3. DOI: 10.17816/ecogen943-14 EDN: OQPKQN
7. Ковалева Т.Ф., Максимова Н.С., Жуков И.Ю. и др. Кофилин: молекулярно-клеточные функции и роль в функционировании нервной системы // Нейрохимия. 2019. Т. 36. № 1. С. 14. DOI: 10.1134/S1027813319010126 EDN: YXZCVV
8. Лопатина Н.Г., Зачепило Т.Г., Чеснокова Е.Г., Савватеева-Попова Е.В. Поведенческие и молекулярные последствия дефицита эндогенных кинуренинов у медоносной пчелы (Apis mellifera L.) // Журн. высшей нервной деятельности им. И.П. Павлова. 2010. Т. 60. № 2. С. 229. EDN: LOJOKB
9. Мамон Л.А., Бондаренко Л.В., Третьякова И.В. и др. Последствия клеточного стресса при нарушенном синтезе белков теплового шока у дрозофилы // Вестник СПбГУ. 1999. Сер. 3. Вып. 4. № 24. С. 94.
10. Медведева А.В., Молотков Д.А., Никитина Е.А. и др. Регуляция генетических и цитогенетических процессов сигнальным каскадом ремоделирования актина: структура гена LIMK1, архитектура хромосом и способность к обучению спонтанных и мутантных вариантов локуса agnostic дрозофилы // Генетика. 2008. Т. 44. № 6. С. 669. EDN: KHHPVY
11. Никитина Е.А., Каминская А.Н., Молотков Д.А., Попов А.В., Савватеева-Попова Е.В. Влияние теплового шока на обучение, формирование памяти и содержание LIMK1 в мозге самцов Drosophila melanogaster с измененной структурой гена limk1 // Журн. эволюционной биохимии и физиологии. 2014. Т. 50. № 2. С. 137. EDN: QBIONV
12. Никитина Е.А., Комарова А.В., Голубкова Е.В., Третьякова И.В., Мамон Л.А. Полудоминантное влияние мутации l(1)ts403 (sbr10) на нерасхождение половых хромосом в мейозе у самок Drosophila melanogaster при тепловом воздействии // Генетика. 2003. Т. 39. № 3. С. 341. EDN: OPSBVZ
13. Никитина Е.А., Медведева А.В., Герасименко М.С. и др. Ослабленное магнитное поле Земли: влияние на транскрипционную активность генома, обучение и память у Dr. melanogaster // Журн. высшей нервной деятельности им. И.П. Павлова. 2017. Т. 67. № 2. С. 246. DOI: 10.7868/S0044467717020101 EDN: YTLQZT
14. Никитина Е.А., Медведева А.В., Долгая Ю.Ф. и др. Участие GDNF, LIMK1 и белков теплового шока в формировании процеcсов обучения и памяти у дрозофилы // Журн. эволюционной биохимии и физиологии. 2012. Т. 48. № 6. С. 588. EDN: PEVBOT
15. Никитина Е.А., Медведева А.В., Захаров Г.А., Савватеева-Попова Е.В. Локус agnostic дрозофилы: вовлеченность в становление когнитивных нарушений при синдроме Уильямса // Acta Naturae. 2014. Т. 6. № 2(21). С. 58. EDN: SLBMST
16. Никитина Е.А., Медведева А.В., Захаров Г.А., Савватеева-Попова Е.В. Синдром Уильямса как модель изучения пути гены-мозг-когнитивные функции: генетика и эпигенетика // Acta Naturae. 2014. Т. 6. № 1(20). С. 9. EDN: RZHHZN
17. Савватеева-Попова Е.В., Никитина Е.А., Медведева А.В. От нейрогенетики к нейроэпигенетике // Генетика. 2015. Т. 51. № 5. С. 613. DOI: 10.7868/S0016675815050070 EDN: TPWJSV
18. Савватеева-Попова Е.В., Переслени А.И., Шарагина Л.М. и др. Особенности архитектуры Х-хромосомы, экспрессии LIM-киназы 1 и рекомбинации у мутантов дрозофилы локуса agnostic: модель синдрома Вильямса человека // Генетика. 2004. Т. 40. № 6. С. 749. EDN: OPWUAX
19. Acevedo K., Moussi N., Li R., Soo P., Bernard O. LIM kinase 2 is widely expressed in all tissues // J. Histochem. Cytochem. 2006. V. 54. № 5. P. 487. DOI: 10.1369/jhc.5C6813.2006
20. Altman J. Autoradiographic investigation of cell proliferation in the brains of rats and cats // Anat. Rec. 1963. V. 145. P. 573. DOI: 10.1002/ar.1091450409
21. Alvarez-Castelao B., Schuman E.M. The regulation of synaptic protein turnover // J. Biol. Chem. 2015. V. 290. №48. P. 28623. DOI: 10.1074/jbc.R115.657130
22. Anderson C.A., Kovar D.R., Gardel M.L., Winkelman J.D. LIM domain proteins in cell mechanobiology // Cytoskeleton. 2021. V. 78. № 6. P. 303. DOI: 10.1002/cm.21677 EDN: MNZDZJ
23. Asrar S., Meng Y., Zhou Z. et al. Regulation of hippocampal long-term potentiation by p21-activated protein kinase 1 (PAK1) // Neuropharmacology. 2009. V. 56. P. 73. DOI: 10.1016/j.neuropharm.2008.06.055
24. Balaban P.M., Roshchin M., Timoshenko A.K. et al. Homolog of protein kinase Mζ maintains context aversive memory and underlying long-term facilitation in terrestrial snail Helix // Front. Cell Neurosci. 2015. V. 9. Art. 222. DOI: 10.3389/fncel.2015.00222
25. Ben Zablah Y., Zhang H., Gugustea R., Jia Z. LIM-Kinases in synaptic plasticity, memory, and brain diseases // Cells. 2021. V. 10. P. 2079. DOI: 10.3390/cells10082079 EDN: FREJHZ
26. Berabez R., Routier S., Bénédetti H., Plé K., Vallée B. LIM Kinases, promising but reluctant therapeutic targets: chemistry and preclinical validation in vivo // Cells. 2022. V. 11. P. 2090. DOI: 10.3390/cells11132090 EDN: RPKWFB
27. Bernard O., Ganiatsas S., Kannourakis G., Dringen R. Kiz-1, a protein with LIM zinc finger and kinase domains, is expressed mainly in neurons // Cell Growth Differ. 1994. V. 5. P. 1159.
28. Blanpied T.A., Kerr J.M., Ehlers M.D. Structural plasticity with preserved topology in the postsynaptic protein network // Proc. Natl. Acad. Sci. USA. 2008. V. 105. № 34. P. 12587. DOI: 10.1073/pnas.0711669105
29. Bliss T.V., Collingridge G.L. A synaptic model of memory: long-term potentiation in the hippocampus // Nature. 1993. V. 361. P. 31. DOI: 10.1038/361031a0 EDN: XZDUDK
30. Bosch M, Hayashi Y. Structural plasticity of dendritic spines // Curr. Opin. Neurobiol. 2012. V. 22. № 3. P. 383. DOI: 10.1016/j.conb.2011.09.002 EDN: RNPZLN
31. Borodinova A.A., Zuzina A.B., Balaban P.M. Role of atypical protein kinases in maintenance of long-term memory and synaptic plasticity // Biochemistry (Mosc). 2017. V. 82. № 3. P. 243. DOI: 10.1134/S0006297917030026 EDN: YVLLKR
32. Borovac J., Bosch M., Okamoto K. Regulation of actin dynamics during structural plasticity of dendritic spines: Signaling messengers and actin binding proteins // Mol. Cell Neurosci. 2018. V. 91. P. 122. DOI: 10.1016/j.mcn.2018.07.001 EDN: YKCWCL
33. Burston S.G., Clarke A.R. Molecular chaperones: physical and mechanistic properties // Essay Biochem. 1995. V. 29. P. 125.
34. Cervantes-Sandoval I., Chakraborty M., MacMullen C., Davis R.L. Scribble scaffolds a signalosome for active forgetting // Neuron. 2016. V. 90. № 6. P. 1230. DOI: 10.1016/j.neuron.2016.05.010
35. Chatterjee D., Preuss F., Dederer V., Knapp S., Mathea S. Structural aspects of LIMK regulation and pharmacology // Cells. 2022. V. 11. № 1. Art. 142. DOI: 10.3390/cells11010142 EDN: QQCBFL
36. Cingolani L.A., Goda Y. Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy // Nat. Rev. Neurosci. 2008. V. 9. P. 344. DOI: 10.1038/nrn2373
37. Cristofanilli M., Akopian A. Calcium channel and glutamate receptor activities regulate actin organization in the salamander retinal neuron // J. Physiol. 2006. V. 575. Pt. 2. P. 543. DOI: 10.1113/jphysiol.2006.114108
38. Cuberos H., Vallée B., Vourc’h P. et al. Roles of LIM kinases in central nervous system function and dysfunction // FEBS Lett. 2015. V. 589. № 24. Pt B. P. 3795. DOI: 10.1016/j.febslet.2015.10.032
39. Dan C., Kelly A., Bernard O., Minden A. Cytoskeletal changes regulated by the PAK4 serine/threonine kinase are mediated by LIM kinase 1 and cofilin // J. Biol. Chem. 2001. V. 276. № 34. P. 32115. DOI: 10.1074/jbc.M100871200
40. Davis R.L., Kiger Jr J.A. Genetic manipulation of cyclic AMP levels in Drosophila melanogaster // Biochem Biophys Res Commun. 1978. V. 81. № 4. P. 1180. DOI: 10.1016/0006-291x(78)91261-5
41. Davis R.L., Zhong Y. The Biology of Forgetting-A Perspective // Neuron. 2017. V. 95. № 3. P. 490. DOI: 10.1016/j.neuron.2017.05.039 EDN: YHZMSL
42. Dong, T., He, J., Wang, S. et al. Inability to activate Rac1-dependent forgetting contributes to behavioral inflexibility in mutants of multiple autism-risk genes // Proc. Natl. Acad. Sci. U.S.A. 2016. V. 113. № 27. P. 7644. DOI: 10.1073/pnas.1602152113 EDN: WQKYON
43. Dubnai J., Chiang A.-S., Tully T. Neural substrates of memory: from synapse to system // J. Neurobiol. 2003. V. 54. № 1. P. 238. DOI: 10.1002/neu.10170
44. Dudai Y. The Neurobiology of memory: concepts, findings, trends. 1st edition. Oxford University Press: 1989. 352 p.
45. Edelmann L., Spiteri E., Koren K. et al. AT-rich palindromes mediate the constitutional t (11;22) translocation // Am. J. Hum. Genet. 2001. V. 68. № 1. P. 1. DOI: 10.1086/316952 EDN: YJEOQU
46. Edwards D.C., Gill G.N. Structural features of LIM kinase that control effects on the actin cytoskeleton // J. Biol. Chem. 1999. V. 274. P. 11352. DOI: 10.1074/jbc.274.16.11352
47. Endo M., Ohashi K., Mizuno K. LIM Kinase and slingshot are critical for neurite extension // The J. Biological Chemistry. 2007 V. 282. № 18. P. 13692. DOI: 10.1074/jbc.M610873200
48. Endo M., Ohashi K., Sasaki Y. et al. Control of growth cone motility and morphology by LIM kinase and Slingshot via phosphorylation and dephosphorylation of cofilin // J. Neurosci. 2003. V. 23. P. 2527. DOI: 10.1523/JNEUROSCI.23-07-02527.2003
49. Erlendsson S., Thorsen T.S., Vauquelin G. et al. Mechanisms of PDZ domain scaffold assembly illuminated by use of supported cell membrane sheets // eLife 2019. V. 8. e39180. DOI: 10.7554/eLife.39180
50. Foletta V.C., Moussi N., Sarmiere P.D., Bamburg J.R., Bernard O. LIM kinase 1, a key regulator of actin dynamics, is widely expressed in embryonic and adult tissues // Exp. Cell Res. 2004. V. 294. № 2. P. 392. DOI: 10.1016/j.yexcr.2003.11.024
51. Forthmann B., Bürkner P.-C., Szardenings C., Benedek M., Holling H. A New perspective on the multidimensionality of divergent thinking tasks // Front. Psychol. 2019. V. 10. Art. 985. DOI: 10.3389/fpsyg.2019.00985
52. Gao T.-T., Wang Y., Liu L. et al. LIMK1/2 in the mPFC plays a role in chronic stress-induced depressive- like effects in mice // Int. J. Neuropsychopharmacol. 2020. V. 23. № 12. P. 82. DOI: 10.1093/ijnp/pyaa067 EDN: BFJFXM
53. Gao Y., Shuai Y., Zhang X. et al. Genetic dissection of active forgetting in labile and consolidated memories in Drosophila // Proc. Natl. Acad. Sci. USA. 2019. V. 116. № 42. P. 21191. DOI: 10.1073/pnas.1903763116
54. George J., Soares C., Montersino A., Beique J.-C., Thomas G.M. Palmitoylation of LIM Kinase-1 ensures spine-specific actin polymerization and morphological plasticity // eLife. 2015. V. 4. e06327. DOI: 10.7554/eLife.06327 EDN: UVXGVX
55. Ghosh H.S. Adult neurogenesis and the promise of adult neural stem cells // J. Exp. Neurosci. 2019. V. 13. Art. 1179069519856876. DOI: 10.1177/1179069519856876
56. Gohla A., Birkenfeld J., Bokoch G.M. Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics // Nat. Cell Biol. 2005. V. 7. № 1. P. 21. DOI: 10.1038/ncb1201
57. Gorovoy M., Niu J., Bernard O. et al. LIM Kinase 1 coordinates microtubule stability and actin polymerization in human endothelial cells // J. Biol. Chem. 2005. V. 280. P. 26533. DOI: 10.1074/jbc.M502921200 EDN: MIMNDV
58. Gromov P.S., Celis J.E. Identification of two molecular chaperons (HSX70, HSC70) in mature human erythrocytes // Exp. Cell Res. 1991. V. 195. № 2. P. 556. -n. DOI: 10.1016/0014-4827(91)90412 EDN: XNYJQW
59. Gu Z., Jiang Q., Fu A.K.Y., Ip N.Y., Yan Z. Regulation of NMDA receptors by neuregulin signaling in prefrontal cortex // J. Neurosci. 2005. V. 25. № 20. P. 4974. DOI: 10.1523/JNEUROSCI.1086-05.2005
60. Gu J., Lee C.W., Fan Y. et al. ADF/Cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity // Nat. Neurosci. 2010. V. 13. № 10. P. 1208. DOI: 10.1038/nn.2634
61. Gundersen G.G., Cook T.A. Microtubules and signal transduction // Curr. Opin. Cell Biol. 1999. V. 11. № 1. P. 81. DOI: 10.1016/s0955-0674(99)80010-6 EDN: YDAUVD
62. Hebb D. The organization of behavior. Wiley: New York. 1949. 335 p.
63. Hiraoka J., Okano I., Higuchi O., Yang N., Mizuno K. Self-association of LIM-kinase 1 mediated by the interaction between an N-terminal LIM domain and a C-terminal kinase domain // FEBS Lett. 1996. V. 399. № 1–2. P. 117. DOI: 10.1016/s0014-5793(96)01303-8 EDN: AKTKCX
64. Huang J., Sun W., Ren J. et al. Genome-Wide Identification and characterization of actin-depolymerizing factor (ADF) family genes and expression analysis of responses to various stresses in Zea Mays L. // International Journal of Molecular Sciences. 2020. V. 21. № 5. Art 1751. DOI: 10.3390/ijms21051751 EDN: ZBVLVW
65. Huang, W., Zhou Z., Asrar S. et al. p21-Activated Kinases 1 and 3 control brain size through coordinating neuronal complexity and synaptic properties // Mol. Cell. Biol. 2011. V. 31. № 3. P. 388. DOI: 10.1128/MCB.00969-10 EDN: OAMNQT
66. Humble J., Hiratsuka K., Kasai H., Toyoizumi T. Intrinsic spine dynamics are critical for recurrent network learning in models with and without autism spectrum disorder // Front. Comput. Neurosci. 2019. V. 13. Art. 38. DOI: 10.3389/fncom.2019.00038
67. Kandel E.R. The molecular biology of memory storage: a dialogue between genes and synapses // Science. 2001. V. 294. № 5544. P. 1030. DOI: 10.1126/science.1067020 EDN: DQLGLR
68. Kandel E.R., Dudai Y., Mayford M.R. The molecular and systems biology of memory // Cell. 2014. V. 157. P. 163. DOI: 10.1016/j.cell.2014.03.001
69. Kida S. A Functional Role for CREB as a Positive Regulator of Memory Formation and LTP // Exp. Neurobiol. 2012. V. 21. № 4. P. 136. DOI: 10.5607/en.2012.21.4.136
70. Konorski J. Conditioned Reflexes and Neuron Organization. Cambridge University Press, Cambridge. 1948. 267 p.
71. Kozlov E.N., Tokmatcheva E.V., Khrustaleva A.M. et al. Long-term memory formation in Drosophila depends on the 3′UTR of CPEB Gene orb2 // Cells. 2023. V. 12. P. 318. DOI: 10.3390/cells12020318 EDN: BLTTFZ
72. Lamprecht R., Farb C.R., LeDoux E.J. Fear Memory Formation Involves p190 RhoGAP and ROCK proteins through a GRB2-mediated complex // Neuron. 2002. V. 36. № 4. P. 727. DOI: 10.1016/s0896-6273(02)01047-4
73. Lee-Hoeflich S.T., Causing C.G., Podkowa M. et al. Activation of LIMK1 by binding to the BMP receptor, BMPRII, regulates BMP-dependent dendritogenesis // EMBO J. 2004. V. 23. № 24. P. 4792. DOI: 10.1038/sj.emboj.7600418
74. Leung C., Cao F., Nguyen R. et al. Activation of entorhinal cortical projections to the dentate gyrus underlies social memory retrieval // Cell Rep. 2018. V. 23. № 8. P. 2379. DOI: 10.1016/j.celrep.2018.04.073
75. Li R., Soosairajah J., Harari D. et al. Hsp90 increases LIM kinase activity by promoting its homo-dimerization // FASEB J. 2006. V. 20. № 8. P. 1218. fje. DOI: 10.1096/fj.05-5258
76. Lindström N.O., Neves C., McIntosh R. et al. Tissue specific characterisation of Lim-kinase 1 expression during mouse embryogenesis // Gene Expr. Patterns. 2010. V. 11. № 3–4. P. 221. DOI: 10.1016/j.gep.2010.12.003
77. Liu Y., Du S., Lv.L. et al. Hippocampal activation of Rac1 regulates the forgetting of object recognition memory // Curr Biol. 2016. V. 26. № 17. P. 2351. DOI: 10.1016/j.cub.2016.06.056
78. Lunardi P., Sachser R.M., Sierra R.O. et al. Effects of hippocampal LIMK inhibition on memory acquisition, consolidation, retrieval, reconsolidation, and extinction // Mol. Neurobiol. 2017. V. 55. № 2. P. 958. -x. DOI: 10.1007/s12035-016-0361
79. Maekawa M., Ishizaki T., Boku S. et al. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase // Science. 1999. V. 285. №5429. P. 895. DOI: 10.1126/science.285.5429.895 EDN: CUDKOP
80. Malinow R., Malenka R.C. AMPA receptor trafficking and synaptic plasticity // Annu. Rev. Neurosci. 2002. V. 25. P. 103. DOI: 10.1146/annurev.neuro.25.112701.142758
81. Manetti F. LIM kinases are attractive targets with many macromolecular partners and only a few small molecule regulators // Med. Res. Rev. 2011. V. 32. № 5. P. 968. DOI: 10.1002/med.20230 EDN: RJDCDF
82. Mao R., Deng R., Wei Y. et al. LIMK1 and LIMK2 regulate cortical development through affecting neural progenitor cell proliferation and migration // Mol. Brain. 2019. V. 12. № 1. Art. 67. DOI: 10.1186/s13041-019-0487-7 EDN: JAOICQ
83. McBride S.M.J., Giuliani G., Choi C. et al. Mushroom body ablation impairs short_term memory and long-term memory of courtship conditioning in Drosophila melanogaster // Neuron. 1999. V. 24. № 4. P. 967. DOI: 10.1016/s0896-6273(00)81043-0
84. Medina C., de la Fuente V., Dieck T.S. et al. LIMK, Cofilin 1 and actin dynamics involvement in fear memory processing // Neurobiol Learn Mem. 2020. V. 173. P. 107275. DOI: 10.1016/j.nlm.2020.107275 EDN: VVDNVJ
85. Medina J.H. Neural, cellular and molecular mechanisms of active forgetting // Front. Syst. Neurosci. 2018. V. 12. Art. 3. DOI: 10.3389/fnsys.2018.00003
86. Medvedeva A.V., Tokmatcheva E.V., Kaminskaya A.N. et al. Parent-of-origin effects on nuclear chromatin organization and behavior in a Drosophila model for Williams–Beuren Syndrome // Vavilovskii Zhurnal Genetiki i Selektsii. 2021. V. 25. № 5. P. 472. DOI: 10.18699/VJ21.054 EDN: NDBZCQ
87. Meng J., Meng Y., Hanna A., Janus C., Jia Z. Abnormal long-lasting synaptic plasticity and cognition in mice lacking the mental retardation gene Pak3 // J. Neurosci. 2005. V. 25. № 28. P. 6641. DOI: 10.1523/JNEUROSCI.0028-05.2005
88. Meng Y., Zhang Y., Tregoubov V. et al. Abnormal spine morphology and enhanced LTP in LIMK1 knockout mice // Neuron. 2002. V. 35. № 1. P. 121. DOI: 10.1016/s0896-6273(02)00758-4
89. Misra U.K., Deedwania R., Pizzo S.V. Binding of activated alpha 2-macroglobulin to its cell surface receptor GRP78 in 1-LN prostate cancer cells regulates PAK-2 dependent activation of LIMK // J. Biol. Chem. 2005. V. 280. № 28. P. 26278. DOI: 10.1074/jbc.M414467200
90. Mizuno K. Signaling mechanisms and functional roles of cofilin phosphorylation and dephosphorylation // Cell. Signal. 2013. V. 25. № 2. P. 457. DOI: 10.1016/j.cellsig.2012.11.001
91. Mizuno K., Okano I., Ohashi K. et al. Identification of a human CDNA encoding a novel protein kinase with two repeats of the LIM/Double zinc finger motif // Oncogene. 1994. V. 9. № 6. P. 1605.
92. Morimoto R.I. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators // Genes Dev. 1998. V. 12. № 24. P. 3788. DOI: 10.1101/gad.12.24.3788 EDN: YBQKLD
93. Munsie L., Caron N., Atwal R.S. et al. Mutant huntingtin causes defective actin remodeling during stress: defining a new role for transglutaminase 2 in neurodegenerative disease // Hum. Mol. Genet. 2011. V. 20. № 10. P. 1937. DOI: 10.1093/hmg/ddr075
94. Nagata K., Ohashi K., Yang N., Mizuno K. The N-terminal LIM domain negatively regulates the kinase activity of LIM-kinase 1 // Biochem. J. 1999. V. 343. Pt 1. P. 99.
95. Namme J.N., Bepari A.K., Takebayashi H. Cofilin signaling in the CNS physiology and neurodegeneration // Int. J. Mol. Sci. 2021. V. 22. № 19. P. 10727. DOI: 10.3390/ijms221910727 EDN: TSVNPG
96. Ohta Y., Kousaka K., Nagata-Ohashi K. et al. Differential activities, subcellular distribution and tissue expression patterns of three members of slingshot family phosphatases that dephosphorylate cofilin // Genes Cells. 2003 V. 8. № 10. P. 811. x. DOI: 10.1046/j.1365-2443.2003.00678 EDN: ETZYRD
97. Okano I., Hiraoka J., Otera H. et al. Identification and characterization of a novel family of serine/threonine kinases containing two N-Terminal LIM motifs // J. Biol. Chem. 1995. V. 270. P. 31321.
98. Patel U., Perez L., Farrell S. et al. Transcriptional changes before and after forgetting of a long term sensitization memory in Aplysia californica // Neurobiol. Learn. Mem. 2018. V. 155. P. 474. DOI: 10.1016/j.nlm.2018.09.007
99. Prunier C., Prudent R., Kapur R., Sadoul K., Lafanechère L. LIM kinases: cofilin and beyond // Oncotarget. 2017. V. 8. № 25. P. 41749. DOI: 10.18632/oncotarget.16978
100. Qu X., Kumar A., Blockus H., Waites C., Bartolini F. Activity-Dependent nucleation of dynamic microtubules at presynaptic boutons controls neurotransmission // Curr. Biol. 2019. V. 29. № 24. P. 4231.e5. DOI: 10.1016/j.cub.2019.10.049
101. Rademacher N., Kuropka B., Kunde S.-A. et al. Intramolecular domain dynamics regulate synaptic MAGUK protein interactions // eLife. 2019. V. 13. № 8. eLife.41299. DOI: 10.7554/eLife.41299
102. Reaume C.J., Sokolowski M.B., Mery F. A natural genetic polymorphism affects retroactive interference in Drosophila melanogaster // Proc. Biol. Sci. 2011. V. 278. P. 91. DOI: 10.1098/rspb.2010.1337
103. Redt-Clouet C., Trannoy S., Boulanger A. et al. Mushroom body neuronal remodelling is necessary for short-term but not for long-term courtship memory in Drosophila // Eur. J. Neurosci. 2012. V. 35. № 11. P. 1684. x. DOI: 10.1111/j.1460-9568.2012.08103 EDN: PDRFMH
104. Rivlin P.K., St Clair R.M., Vilinsky I., Deitcher D.L. Morphology and molecular organization of the adult neuromuscular junction of Drosophila // J. Comp. Neurol. 2004. V. 468. № 4. P. 596. DOI: 10.1002/cne.10977
105. Rosso S., Bollati F., Bisbal M. et al. LIMK1 regulates Golgi dynamics, traffic of Golgi-derived vesicles, and process extension in primary cultured neurons // Mol. Biol. Cell. 2004. V. 15. P. 3433. DOI: 10.1091/mbc.e03-05-0328
106. Rust M.B. Novel functions for ADF/cofilin in excitatory synapses – lessons from gene-targeted mice // Commun. Integr. Biol. 2015. V. 8. № 6. e1114194. DOI: 10.1080/19420889.2015.1114194
107. Rust M.B., Gurniak C.B., Renner M. et al. Learning, AMPA receptor mobility and synaptic plasticity depend on n-cofilin-mediated actin dynamics // EMBO J. 2010. V. 29. № 11. P. 1889. DOI: 10.1038/emboj.2010.72 EDN: NYLBMN
108. Sacchetti P., Carpentier R., Segard P., Olive-Cren C., Lefebvre P. Multiple signaling pathways regulate the transcriptional activity of the orphan nuclear receptor NURR1 // Nucleic Acids Res. 2006. V. 34. № 19. P. 5515. DOI: 10.1093/nar/gkl712 EDN: IUWHCF
109. Salvarezza S.B., Deborde S., Schreiner R. et al. LIM Kinase 1 and cofilin regulate actin filament population required for dynamin-dependent apical carrier fission from the trans – Golgi network // Mol. Biol. Cell. 2009. V. 20. № 1. P. 438. DOI: 10.1091/mbc.e08-08-0891
110. Savvateeva E. V., Kamyshev N.G. Behavioral effects of temperature sensitive mutations affecting metabolism of cAMP in Drosophila melanogaster // Pharmacol. Biochem. Behav. 1981. V. 14. № 5. P. 603. DOI: 10.1016/0091-3057(81)90119-2 EDN: UWITRB
111. Savvateeva-Popova E.V., Zhuravlev A.V., Brázda V. et al. Drosophila model for the analysis of genesis of LIM-kinase 1-dependent Williams–Beuren syndrome cognitive phenotypes: INDELs, transposable elements of the Tc1/Mariner superfamily and microRNAs // Frontiers in Genetics. 2017. V. 8. Art. 123. DOI: 10.3389/fgene.2017.00123 EDN: XNMVXF
112. Scott R.W., Olson M.F. LIM Kinases: function, regulation and association with human disease // J. Mol. Med. 2007. V. 85. № 6. P. 555. DOI: 10.1007/s00109-007-0165-6 EDN: YXYEPG
113. Schubert V., Da Silva J.S., Dotti C.G. Localized recruitment and activation of RhoA underlies dendritic spine morphology in a glutamate receptor–dependent manner // J. Cell Biol. 2006. V. 172. № 3. P. 453. DOI: 10.1083/jcb.200506136
114. Shi Y., Pontrello C.G., DeFea K.A., Reichardt L.F., Ethell I.M. Focal adhesion kinase acts downstream of EphB receptors to maintain mature dendritic spines by regulating cofilin activity // J. Neurosci. 2009. V. 29. № 25. P. 8129. DOI: 10.1523/JNEUROSCI.4681-08.2009
115. Shuai Y., Lu B., Hu Y. et al. Forgetting is regulated through Rac activity in Drosophila // Cell. 2010. V. 140. № 4. P. 579. DOI: 10.1016/j.cell.2009.12.044 EDN: NYZSKT
116. Simhadri P.K., Malwade R., Vanka R. et al. Dysregulation of LIMK-1/cofilin-1 pathway: A possible basis for alteration of neuronal morphology in experimental cerebral malaria // Ann Neurol. V. 82. № 3. P. 429. DOI: 10.1002/ana.25028
117. Stanyon C.A., Bernard O. LIM-kinase1 // Int. J. Biochem. Cell Biol. 1999. V. 31. № 3–4. P. 389. DOI: 10.1016/s1357-2725(98)00116-2
118. Sumi T., Matsumoto K., Shibuya A., Nakamura T. Activation of LIM kinases by myotonic dystrophy kinase-related Cdc42-bindnig kinase alpha // J. Biol. Chem. 2001. V. 276. № 25. P. 23092. DOI: 10.1074/jbc.C100196200
119. Tantama M., Hung Y.P., Yellen G. Optogenetic reporters: Fluorescent protein-based genetically encoded indicators of signaling and metabolism in the brain // Progress in Brain Research. 2012. V. 196. P. 235. DOI: 10.1016/B978-0-444-59426-6.00012-4 EDN: PKKMCZ
120. Todorovski Z., Asrar S., Liu J. et al. LIMK1 regulates long-term memory and synaptic plasticity via the transcriptional factor CREB // Mol. Cell Biol. 2015. V. 35. № 8. P. 1316. DOI: 10.1128/MCB.01263-14
121. Toshima J., Toshima J.Y., Amano T. et al. Cofilin phosphorylation by protein kinase testicular protein kinase 1 and its role in integrin-mediated actin reorganization and focal adhesion formation // Mol. Biol. Cell. 2001. V. 12. № 4. P. 1131. DOI: 10.1091/mbc.12.4.1131
122. Tully T. Discovery of genes involved with learning and memory: An experimental synthesis of Hirschian and Benzerian perspectives // Proc. Natl. Acad. Sci. USA. 1996. V. 93. № 24. P. 13460. DOI: 10.1073/pnas.93.24.13460
123. Tully T., Preat T., Boynton S.C., Del Veccihio M. Genetic dissection of consolidated memory in Drosophila // Cell. 1994. V. 79. № 1. P. 35–47. DOI: 10.1016/0092-8674(94)90398-0
124. Van de Ven T.J., VanDongen H.M.A., VanDongen A.M.J. The nonkinase phorbol ester receptor alpha 1-chimerin binds the NMDA receptor NR2A subunit and regulates dendritic spine density // J. Neurosci. 2005. V. 25. № 41. P. 9488. DOI: 10.1523/JNEUROSCI.2450-05.2005
125. Villalonga E., Mosrin C., Normand T. et al. LIM Kinases, LIMK1 and LIMK2, are crucial node actors of the cell fate: molecular to pathological features // Cells. 2023. V. 12. № 5. P. 805. DOI: 10.3390/cells12050805 EDN: SNZHBY
126. Wada A., Fukuda M., Mishima M., Nishida E. Nuclear export of actin: a novel mechanism regulating the subcellular localization of a major cytoskeletal protein // EMBO J. 1998. V. 17. № 6. P. 1635. DOI: 10.1093/emboj/17.6.1635
127. Wang Y., Dong Q., Xu X.-F. et al. Phosphorylation of cofilin regulates extinction of conditioned aversive memory via AMPAR trafficking // J. Neurosci. 2013. V. 33. № 15. P. 6423. DOI: 10.1523/JNEUROSCI.5107-12.2013
128. Wang W., Townes-Anderson E. Lim kinase, a bi-functional effector in injury-induced structural plasticity of synapses // Neural Regen. Res. 2016. V. 11. № 7. P. 1029. DOI: 10.4103/1673-5374.187018
129. Wang Y., Zeng C., Li J. et al. PAK2 haploinsufficiency results in synaptic cytoskeleton impairment and autism-related behavior // Cell Rep. 2018. V. 24. № 8. P. 2029. DOI: 10.1016/j.celrep.2018.07.061 EDN: YJPPIL
130. Weeber E.J., Levenson J.M., Sweatt J.D. Molecular genetics of human cognition // Mol. Interv. 2002. V. 2. № 6. P. 376. DOI: 10.1124/mi.2.6.376
131. White-Grindley E., Li L., Mohammad K.R. et al. Contribution of Orb2A stability in regulated amyloid-like oligomerization of Drosophila Orb2 // PLoS Biol. 2014. V. 12. №2. e1001786. DOI: 10.1371/journal.pbio.1001786
132. Xu C., Li Q., Efimova O. et al. Identification of Immediate Early Genes in the Nervous System of Snail Helix lucorum // eNeuro. 2019. V. 6. № 3. e0416-18.2019. DOI: 10.1523/ENEURO.0416-18.2019 EDN: KBUJTD
133. Yang N., Higuchi O., Ohashi K. et al. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization // Nature. 1998. V. 393. № 6687. P. 809. DOI: 10.1038/31735
134. Yang N., Mizuno K. Nuclear export of LIM-kinase 1, mediated by two leucine-rich nuclear-export signals within the PDZ domain // Biochem J. 1999. V. 338. Pt 3. P. 793.
135. Yang E.J., Yoon J.H., Min D.S., Chung K.C. LIM kinase 1 activates cAMP-responsive element-binding protein during the neuronal differentiation of immortalized hippocampal progenitor cells // J. Biol. Chem. 2004. V. 279. № 10. P. 8903. DOI: 10.1074/jbc.M311913200
136. Yokoo T., Toyoshima H., Miura M. et al. p57Kip2 regulates actin dynamics by binding and translocating LIM-kinase 1 to the nucleus // J. Biol. Chem. 2003. V. 278. № 52. P. 52919. DOI: 10.1074/jbc.M309334200
137. You T., Gao W., Wei J. et al. Overexpression of LIMK1 promotes tumor growth and metastasis in gastric cancer // Biomed. Pharmacother. 2015. V. 69. P. 96. DOI: 10.1016/j.biopha.2014.11.011
138. Zamboni F., Vieira S., Reis R.L., Oliveira J.M., Collins M.N. The potential of hyaluronic acid in immunoprotection and immunomodulation: Chemistry, processing and function // Progress in Materials Science. 2018. V. 97. P. 97. DOI: 10.1016/j.pmatsci.2018.04.003 EDN: RITRLN
139. Zatsepina O.G., Nikitina E.A., Shilova V.Y. et al. Hsp70 affects memory formation and behaviorally relevant gene expression in Drosophila melanogaster // Cell Stress and Chaperones. 2021. V. 26. № 3. P. 575. DOI: 10.1007/s12192-021-01203-7 EDN: JDZJWP
140. Zhang X., Li Q., Wang L., Liu Z.-J., Zhong Y. Cdc42-Dependent forgetting regulates repetition effect in prolonging memory retention // Cell Rep. 2016. V. 16. № 3. P. 817. DOI: 10.1016/j.celrep.2016.06.041
141. Zhang H., Ben Zablah Y., Liu A. et al. Overexpression of LIMK1 in hippocampal excitatory neurons improves synaptic plasticity and social recognition memory in APP/PS1 mice // Mol. Brain. 2021. V. 14. № 1. P. 121. DOI: 10.1186/s13041-021-00833-3 EDN: NFKKJO
142. Zhou Z., Meng Y., Asrar S., Todorovski Z., Jia Z. A critical role of Rho-kinase ROCK2 in the regulation of spine and synaptic function // Neuropharmacology. 2009. V. 56. № 1. P. 81. DOI: 10.1016/j.neuropharm.2008.07.031
Выпуск
Другие статьи выпуска
Фактор роста фибробластов (FGF21) является гормоном печени, который способствует адаптации организма к различным ситауциям, вызывающим напряжение систем метаболизма. В обзоре рассмотрены некоторые нерешенные вопросы, касающиеся физиологического действия этого уникального метаболического регулятора, суммированы основные знания о фармакологических свойствах FGF21 и освещены половые различия в их проявлении при коррекции ожирения. Обобщены результаты, показывающие, что эффективность использования FGF21 для терапии ожирения зависит от этиологии ожирения и пола. Подчеркивается необходимость исследования механизмов возникновения половых различий действия FGF21 для его успешного использования при лечении ожирения у особей мужского и женского пола.
Сладкое – наиболее сильная вкусовая модальность, формирующая пищевое поведение и влияющая на гомеостаз. В обзоре суммированы сведения о рецепции и кодировании вкусовых сигналов на уровне вкусовых почек и центров головного мозга при потреблении сладких веществ. Основное внимание уделено молекулярно-клеточным механизмам идентификации сладкого вкуса и детекции калорийного состава пищи, включая роль мембранных белковых рецепторов T1R2/T1R3 и связанного с ними внутриклеточного ферментативного каскада, а также метаболического механизма оценки концентрации поступающей в цитоплазму глюкозы. Описаны генетические аспекты чувствительности к сладкому и влияние полиморфизма генов рецептора сладкого вкуса на чувствительность к сахарам и низкокалорийным сахарозаменителям. В обзоре приведены результаты современных исследований эндокринной, паракринной и аутокринной модуляции рецепции и восприятия сладкого вкуса в зависимости от метаболического статуса организма. Сделано предположение о перспективном направлении исследований по проблеме.
Кортикотропин-рилизинг фактор (КРФ) и капсаицин-чувствительные афферентные нейроны с эфферентно-подобной функцией (КЧН) вносят важный вклад в регуляцию функций желудочно-кишечного тракта (ЖКТ) и гастропротекцию. Цель обзора заключалась в анализе данных литературы, в том числе и результатов собственных исследований, о взаимодействии КРФ и КЧН в обеспечении гастропротекции и регуляции функций ЖКТ, с фокусом на наиболее изученное их взаимодействие в регуляции моторной функции ЖКТ. На основании результатов исследований авторов обзора обсуждается возможность вклада КЧН в реализацию гастропротективного влияния КРФ и, наоборот, возможность участия КРФ в обеспечении гастропротективного действия капсацина, активирующего КЧН. Рассматривается вклад глюкокортикоидных гормонов в реализацию гастропротективного действия КРФ и компенсаторная гастропротективная роль данных гормонов в условиях выключения из функционирования КЧН.
Наличие близких социальных связей – необходимое условие для психического и физического здоровья и благополучия в любом возрасте. Существенный процент населения Земли пережил условия “локдауна” в связи с пандемией COVID-19. Появляется все больше данных научной литературы, посвященных негативному воздействию социальной изоляции на внимание, память, восприятие, исполнительные функции и другие аспекты когнитивных процессов. Это может усложнять повседневную жизнь людей, снижая качество жизни. В обзоре предпринята попытка систематизации накопленных научных фактов о взаимосвязи социальной изоляции и развития нарушений когнитивных функций у человека, собранных в лонгитюдных популяционных исследованиях, а также проведен анализ данных о влиянии социальной изоляции разной длительности на процессы обучения и памяти, полученных в экспериментальных исследованиях на животных. Затронуты вопросы возможной связи этих нарушений, индуцированных социальной изоляцией, с изменением функционирования одной из систем стресс-реактивности – гипоталамо-гипофизарно-адреналовой оси и иммуновоспалительным ответом.
В обзоре представлены данные последних лет о восстановлении двигательных функций после спинальных травм: о спонтанной нейропластичности; о пластичности, зависящей от физической активности; о результатах использования эпидуральной и чрескожной электростимуляции спинного мозга для восстановления контроля движений; о нейрофизиологических изменениях и механизмах, инициируемых спинальной электростимуляцией, которые, возможно, способствуют функциональному восстановлению после травм спинного мозга.
Издательство
- Издательство
- ИЗДАТЕЛЬСТВО НАУКА
- Регион
- Россия, Москва
- Почтовый адрес
- 121099 г. Москва, Шубинский пер., 6, стр. 1
- Юр. адрес
- 121099 г. Москва, Шубинский пер., 6, стр. 1
- ФИО
- Николай Николаевич Федосеенков (Директор)
- E-mail адрес
- info@naukapublishers.ru
- Контактный телефон
- +7 (495) 2767735