Сладкое – наиболее сильная вкусовая модальность, формирующая пищевое поведение и влияющая на гомеостаз. В обзоре суммированы сведения о рецепции и кодировании вкусовых сигналов на уровне вкусовых почек и центров головного мозга при потреблении сладких веществ. Основное внимание уделено молекулярно-клеточным механизмам идентификации сладкого вкуса и детекции калорийного состава пищи, включая роль мембранных белковых рецепторов T1R2/T1R3 и связанного с ними внутриклеточного ферментативного каскада, а также метаболического механизма оценки концентрации поступающей в цитоплазму глюкозы. Описаны генетические аспекты чувствительности к сладкому и влияние полиморфизма генов рецептора сладкого вкуса на чувствительность к сахарам и низкокалорийным сахарозаменителям. В обзоре приведены результаты современных исследований эндокринной, паракринной и аутокринной модуляции рецепции и восприятия сладкого вкуса в зависимости от метаболического статуса организма. Сделано предположение о перспективном направлении исследований по проблеме.
Идентификаторы и классификаторы
- SCI
- Биология
- УДК
- 612.87. Вкус
Углеводы – основной легко метаболизируемый источник энергии, а также источник глюкозы, метаболита, необходимого для работы мозга, в связи с чем, очевидно, сладкий вкус приобрел наибольшую гедонистическую привлекательность [41, 171].
Список литературы
1. Лукина Е.А., Муровец В.О., Золотарев В.А. Экспериментальная аносмия нарушает реакцию избегания растворов этанола у мышей инбредной линии 129P3/j // Журн. Эвол. Биохим. и Физиол. 2020. Т. 56. № 1. С. 77–80. DOI: 10.31857/S0044452920010088 EDN: QMDYVK
2. Antinucci M., Risso D. A matter of taste: lineage-specific loss of function of taste receptor genes in vertebrates // Front. Mol. Biosci. 2017. V. 4. P. 81. 10.3389 /fmolb.2017.00081. DOI: 10.3389/fmolb.2017.00081 EDN: SDOFXB
3. Avery J.A., Liu A.G., Ingeholm J.E. et al. Taste quality representation in the human brain // J. Neurosci. 2020. V. 40. P. 1042–1052. DOI: 10.1523/JNEUROSCI.1751-19.2019
4. Bachmanov A.A., Bosak N.P., Floriano W.B. et al. Genetics of sweet taste preferences // Flavour and Fragr. J. 2011. V. 26. P. 286–294. DOI: 10.1002/ffj.2074 EDN: OIBNZN
5. Bachmanov A. A., Bosak N. P., Lin C. et al. Genetics of Taste Receptors // Curr. Pharm. Des. 2014. V. 20. P. 2669–2683. DOI: 10.2174/13816128113199990566 EDN: UTSVDX
6. Bachmanov A.A., Kiefer S.W., Tordoff M.G. et al. Chemosensory factors influencing alcohol perception, preferences and consumption // Alcohol. Clin. Exp. Res. 2003. V. 27. P. 220–231. DOI: 10.1097/01.ALC.0000051021.99641.19
7. Bachmanov A.A., Li. X., Reed D.R. et al. Positional cloning of the mouse saccharin preference (Sac) locus // Chem. Senses. 2001a. V. 26. Iss. 7. P. 925–933. DOI: 10.1093/chemse/26.7.925 EDN: INEUYP
8. Bachmanov A.A., Reed D.R., Tordoff M.G., Price R.A., Beauchamp G.K. Intake of ethanol, sodium chloride, sucrose, citric acid, and quinine hydrochloride solutions by mice: a genetic analysis // Behav. Genet. 1996. V. 26. P. 563–573. DOI: 10.1007/BF02361229 EDN: NJLXYT
9. Bachmanov A.A., Tordoff M.G., Beauchamp G.K. Sweetener preference of C57BL/6ByJ and 129P3/J mice // Chem. Senses. 2001b. V. 26. Iss. 7. P. 905–913. DOI: 10.1093/chemse/26.7.905 EDN: INEUXV
10. Bady I., Marty N., Dallaporta M. et al. Evidence from glut2-null mice that glucose is a critical physiological regulator of feeding // Diabetes. 2006. V. 55. P. 988–995. DOI: 10.2337/diabetes.55.04.06.db05-1386
11. Bakshi V.P., Kelley A.E. Feeding induced by opioid stimulation of the ventral striatum: role of opiate receptor subtypes // J. Pharmacol. Exp. Ther. 1993. V. 265. P. 1253–1260.
12. Baldwin M.W., Toda Y., Nakagita T. et al. Evolution of sweet taste perception in hummingbirds by transformation of the ancestral umami receptor // Science. 2014. V. 345. Iss. 6199. P. 929–933. DOI: 10.1126/science.1255097
13. Banik D.D., Martin L.E., Freichel M. et al. TRPM4 and TRPM5 are both required for normal signaling in taste receptor cells // Proc. Natl. Acad. Sci. U S A. 2018.V. 115. P. 772–781. DOI: 10.1073/pnas.1718802115
14. Barretto R.P.J., Gillis-Smith S., Chandrashekar J. et al. The neural representation of taste quality at the periphery // Nature. 2015. V. 517. P. 373-376. 10.1038/nature1387 3. DOI: 10.1038/nature13873
15. Beckstead R.M., Morse J.R., Norgren R. The nucleus of the solitary tract in the monkey: projections to the thalamus and brain stem nuclei // J. Comp. Neurol. 1980. V. 190. P. 259–282. DOI: 10.1002/cne.901900205
16. Behrens M., Meyerhof W. Gustatory and extragustatory functions of mammalian taste receptors // Physiol. Behav. 2011. V. 105. P. 4-13. DOI: 10.1016/j.physbeh.2011.02.010 EDN: PIKPRJ
17. Belknap J.K., Crabbe J.C., Young E.R. Voluntary consumption of alcohol in 15 inbred mouse strains // Psychopharmacology. 1993. V. 112. № 4. P. 503–510. DOI: 10.1007/BF02244901 EDN: XZBFZJ
18. Benford H., Bolborea M., Pollatzek E. et al. A sweet taste receptor-dependent mechanism of glucosensing in hypothalamic tanycytes // Glia. 2017. V. 65. Iss. 5. P. 773–789. DOI: 10.1002/glia.23125
19. Berridge K.C., Kringelbach M.L. Affective neuroscience of pleasure: reward in humans and animals // Psychopharmacology (Berl). 2008. V. 199. P. 457–80. DOI: 10.1007/s00213-008-1099-6 EDN: CWILUY
20. Blizard D.A. Sweet and bitter taste of ethanol in C57BL/6 and DBA2/J mouse strains // Behav. Genet. 2007. V. 37. P. 146–159. DOI: 10.1007/s10519-006-9121-4 EDN: XUVBJW
21. Blizard D.A., McClearn G.E. Association between ethanol and sucrose intake in the laboratory mouse: exploration via congenic strains and conditioned taste aversion // Alcohol. Clin. Exp. Res. 2000. V. 24. P. 253–258. EDN: LNDIKJ
22. Bray G.A., Popkin B.M. Calorie-sweetened beverages and fructose: what have we learned 10 years later // Pediatr. Obes. 2013. V. 8. P. 242–248. x. DOI: 10.1111/j.2047-6310.2013.00171
23. Breslin P.A.S. An evolutionary perspective on food and human taste // Curr. Biol. 2013.V. 23. P. 409–418. DOI: 10.1016/j.cub.2013.04.010
24. Brog J.S., Salyapongse A., Deutch A.Y., Zahm D.S. The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold // J. Comp. Neurol. 1993. V. 338. P. 255–278. DOI: 10.1002/cne.903380209
25. Burdakov D., Gerasimenko O., Verkhratsky A. Physiological changes in glucose differentially modulate the excitability of hypothalamic melanin-concentrating hormone and orexin neurons in situ // J. Neurosci. 2005. V. 25. P. 2429–2433. DOI: 10.1523/JNEUROSCI.4925-04.2005
26. Canna A., Prinster A., Cantone E. et al. Intensity-related distribution of sweet and bitter taste fMRI responses in the insular cortex //Hum. Brain. Mapp. 2019. V. 40. P. 3631–3646. https://doi. org/. DOI: 10.1002/hbm.24621
27. Carroll M.E., Morgan A.D., Anker J.J., Perry J.L., Dess N.K. Selective breeding for differential saccharin intake as an animal model of drug abuse // Behav. Pharmacol. 2008. V. 19. P. 435–460. DOI: 10.1097/FBP.0b013e32830c3632 EDN: MALGOL
28. Chalmers J.A., Jang J.J., Belsham D.D. Glucose sensing mechanisms in hypothalamic cell models: Glucose inhibition of AgRP synthesis and secretion // Mol. Cell Endocrinol. 2014. V. 382. P. 262–270. DOI: 10.1016/j.mce.2013.10.013
29. Chandrashekar J., Hoon M.A., Ryba N. et al. The receptors and cells for mammalian taste // Nature. 2006. V. 444. P. 288–294. DOI: 10.1038/nature05401
30. Chaudhari N., Roper S.D. The cell biology of taste // J. Cell Biol. 2010. V. 190. P. 285–296. DOI: 10.1083/jcb.201003144 EDN: NARVMB
31. Chen K., Yan J., Suo Y., Li J., Wang Q., Lv B. Nutritional status alters saccharin intake and sweet receptor mRNA expression in rat taste buds // Brain Research. 2010. V. 1325. P.53–62. DOI: 10.1016/j.brainres.2010.02.026 EDN: XYEUOO
32. Chen X., Gabitto M., Peng Y. et al. A gustotopic map of taste qualities in the mammalian brain // Science. 2011. V. 333. P. 1262-1266. 10.1126/science.12040 76. DOI: 10.1126/science.1204076
33. Claret M., Smith M.A., Batterham R.L. et al. AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons // J. Clin. Invest. 2007. V. 117. P. 2325–2336. DOI: 10.1172/JCI31516
34. Cui M., Jiang P., Maillet E. et al. The heterodimeric sweet taste receptor has multiple potential ligand binding sites // Curr. Pharm. Des. 2006. V. 12. P. 4591–4600. DOI: 10.2174/138161206779010350
35. Damak S., Rong M., Yasumatsu K. et al. Detection of sweet and umami taste in the absence of taste receptor T1r3 // Science. 2003. V. 301. P. 850–853. DOI: 10.1126/science.1087155 EDN: GPCTYN
36. Dando R., Roper S.D. Acetylcholine is released from taste cells, enhancing taste signalling // J. Physiol. 2012. V. 590. P. 3009–3017. DOI: 10.1113/jphysiol.2012.232009 EDN: RIIJLB
37. de Araujo I.E., Oliveira-Maia A.J., Sotnikova T.D. et al. Food reward in the absence of taste receptor signaling // Neuron. 2008. V. 57. P. 930–941. DOI: 10.1016/j.neuron.2008.01.032
38. Delaere F., Duchampt A., Mounien L. et al. The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal glucose sensing // Mol. Metab. 2012. V. 2. P. 47–53. DOI: 10.1016/j.molmet.2012.11.003
39. Dias A.G., Eny K.M., Cockburn M. et al. Variation in the TAS1R2 gene, sweet taste perception and intake of sugars // J. Nutrigenet. Nutrigenomics. 2015. V. 8. №. 2. P. 81–90. DOI: 10.1159/000430886
40. Di Lorenzo P.M., Kiefer S.W., Rice A.G., Garcia J. Neural and behavioral responsivity to ethyl alcohol as a tastant // Alcohol. 1986. V. 3. P. 55–61. DOI: 10.1016/0741-8329(86)90071-6
41. DiNicolantonio J.J., O’Keefe J.H., Wilson W.L. Sugar addiction: is it real? A narrative review // Br. J. Sports Med. 2018. V. 52. P. 910–913. DOI: 10.1136/bjsports2017-097971
42. Dotson C.D., Geraedts M.C., Munger S.D. Peptide regulators of peripheral taste function // Semin. Cell. Dev. Biol. 2013. V. 24. P. 232–239. DOI: 10.1016/j.semcdb.2013.01.004 EDN: RKXFMR
43. DuBois G.E. Molecular mechanism of sweetness sensation // Physiol. Behav. 2016. V. 164. P. 453–463. DOI: 10.1016/j.physbeh.2016.03.015
44. Dudley R. Ethanol, fruit ripening, and the historical origins of human alcoholism in primate frugivory // Integr. Comp. Biology. 2004. V. 44. P. 315–323. DOI: 10.1093/icb/44.4.315 EDN: IPNUKD
45. Dunham I., Shimizu N., Roe B.A. et al. The DNA sequence of human chromosome 22 // Nature. 1999. V. 402. № 6761. P. 489–495. DOI: 10.1038/990031 EDN: LNLCKW
46. Elson A.E., Dotson C.D., Egan J.M., Munger S.D. Glucagon signaling modulates sweet taste responsiveness // FASEB J. 2010. V. 24. P. 3960–3969. DOI: 10.1096/fj.10-158105
47. Eny K.M., Wolever T.M., Corey P.N., El-Sohemy A. Genetic variation in TAS1R2 (Ile191Val) is associated with consumption of sugars in overweight and obese individuals in 2 distinct populations // Am. J. Clin. Nutr. 2010. V. 92. Iss. 6. P. 1501–1510. DOI: 10.3945/ajcn.2010.29836
48. Erickson R.P. The evolution and implications of population and modular neural coding ideas // Prog. Brain Res. 2001. V. 130. P. 9–29. DOI: 10.1016/s0079-6123(01)30003-1
49. Erickson R.P. A study of the science of taste: on the origins and infuence of the core ideas // Behav. Brain Sci. 2008. V. 31. P. 59–75. DOI: 10.1017/S0140525X08003348
50. Eriksson L., Esberg A., Haworth S., Holgerson P.L., Johansson I. Allelic variation in taste genes is associated with taste and diet preferences and dental caries // Nutrients. 2019. V. 11. P. 1491. DOI: 10.3390/nu11071491 EDN: PVRGQK
51. Feng X.H., Liu X.M., Zhou LH., Wang J., Liu G.D. Expression of glucagon-like peptide-1 in the taste buds of rat circumvallate papillae // Acta Histochem. 2008. V. 110. P. 151–154. DOI: 10.1016/j.acthis.2007.10.005
52. Finger T.E., Danilova V., Barrows J. et al. ATP signaling is crucial for communication from taste buds to gustatory nerves // Science. 2005. V. 310. P. 1495–1499. DOI: 10.1126/science.1118435 EDN: LDOPWK
53. Finger T., Kinnamon S. Purinergic neurotransmission in the gustatory system // Auton. Neurosci. 2021. V. 236. P. 102874. DOI: 10.1016/j.autneu.2021.102874 EDN: GYXTZA
54. Fletcher M.L., Ogg. M.C., Lu L. et al. Overlapping representation of primary tastes in a defined region of the gustatory cortex // J. Neurosci. 2017. V. 37. P. 7595-7605. DOI: 10.1523/JNEUROSCI.0649-17.2017
55. Fonseca E., de Lafuente V., Simon S.A., Gutierrez R. Sucrose intensity coding and decision-making in rat gustatory cortices // eLife. 2018. V. 7. P. e41152. DOI: 10.7554/eLife.41152
56. Fortuna J.L. Sweet preference, sugar addiction and the familial history of alcohol dependence: shared neural pathways and genes // J. Psychoactive. Drugs. 2010. V. 42. P.147–151. DOI: 10.1080/02791072.2010.10400687 EDN: LRERGN
57. Frank M.E., Contreras R.J., Hettinger T.P. Nerve fibers sensitive to ionic taste stimuli in chorda tympani of the rat // J. Neurophysiol. 1983. V. 50. P. 941–960. DOI: 10.1152/jn.1983.50.4.941
58. Furudono Y., Ando C., Yamamoto C., Kobashi M., Yamamoto T. Involvement of specific orexigenic neuropeptides in sweetener-induced overconsumption in rats // Behav. Brain Res. 2006. V. 175. P. 241–248. DOI: 10.1016/j.bbr.2006.08.031
59. Fushan A.A., Simons C.T., Slack J P., Drayna D. Association between common variation in genes encoding sweet taste signaling components and human sucrose perception // Chem. Senses. 2010. V. 35. Iss. 7. P. 579–592. 10.1093 /chemse /bjq063. DOI: 10.1093/chemse/bjq063
60. Garcia J., Lasiter P.S., Bermudez-Rattoni F., Deems D.A. A general theory of aversion learning // Ann. N. Y. Acad. Sci. 1985. V. 443. P. 8-21. DOI: 10.1111/j.1749-6632.1985.tb27060.x
61. Gehrlach D.A., Dolensek N., Klein A.S. et al. Aversive state processing in the posterior insular cortex // Nat. Neurosci. 2019. V. 22. P. 1424-1437. DOI: 10.1038/s41593-019-0469-1
62. George S.R., Roldan L., Lui A., Naranjo C.A. Endogenous opioids are involved in the genetically determined high preference for ethanol consumption // Alcohol. Clin Exp Res. 1991. V. 15. P. 668–672. x. DOI: 10.1111/j.1530-0277.1991.tb00576
63. Glendinning J.I., Chyou S., Lin I. Initial licking responses of mice to sweeteners: effects of Tas1r3 polymorphisms // Chem. Senses. 2005. V. 30. P. 601–614. DOI: 10.1093/chemse/bji054 EDN: INERQL
64. Glendinning J.I., Stano S., Holter M. et al. Sugar-induced cephalic-phase insulin release is mediated by a T1r2 + T1r3-independent taste transduction pathway in mice // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015. V. 309. P. 552–560. DOI: 10.1152/ajpregu.00056.2015 EDN: VEPRRP
65. Gonzalez J.A., Reimann F., Burdakov D. Dissociation between sensing and metabolism of glucose in sugar sensing neurons // J. Physiol. 2009. V. 587. Iss. 1. P. 41–48. DOI: 10.1113/jphysiol.2008.163410
66. Gosnell B.A., Majchrzak M.J. Centrally administered opioid peptides stimulate saccharin intake in nondeprived rats // Pharmacol. Biochem. Behav. 1989. V. 33. P. 805–810. DOI: 10.1016/0091-3057(89)90474-7
67. Groenewegen H.J., Berendse H.W., Haber S.N. Organization of the output the ventral striatopallidal system in the rat: ventral pallidal efferents // Neurosci. 1993. V. 57. P. 113–142. -v. DOI: 10.1016/0306-4522(93)90115
68. Gutierrez R., Fonseca E., Simon S.A. The neuroscience of sugars in taste, gut-reward, feeding circuits, and obesity // Cell Mol. Life Sci. 2020. V. 77. P. 3469–3502. DOI: 10.1007/s00018-020-03458-2 EDN: FTAIES
69. Hajnal A., Covasa M., Bello N.T. Altered taste sensitivity in obese, prediabetic OLETF rats lacking CCK-1 receptors // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005. V. 289. P. 1675–1686. DOI: 10.1152/ajpregu.00412.2005
70. Hamano K., Nakagawa Y., Ohtsu Y. et al. Lactisole inhibits the glucose-sensing receptor T1R3 expressed in mouse pancreatic β-cells // J. Endocrinol. 2015. V. 226. P. 57–66. DOI: 10.1530/JOE-15-0102
71. Han J., Choi M. Comprehensive functional screening of taste sensation in vivo // bioRxiv 371682. 2018. DOI: 10.1101/371682
72. Hansel D.E., Eipper B.A., Ronnett G.V. Neuropeptide Y functions as a neuroproliferative factor // Nature. 2001. V. 410. P. 940–944. DOI: 10.1038/35073601
73. Hellekant G., Danilova V., Roberts T., Ninomiya Y. The taste of ethanol in a primate model: I. Chorda tympani nerve response in Macaca mulatta // Alcohol. 1997. V. 14. P. 473-484. DOI: 10.1016/s0741-8329(96)00215-7
74. Herness M.S. Vasoactive intestinal peptide-like immunoreactivity in rodent taste cells // Neurosci. 1989. V. 33. P. 411–419. DOI: 10.1016/0306-4522(89)90220-0
75. Herness S., Zhao F.L., Lu S.G., Kaya N., Shen T. Expression and physiological actions of cholecystokinin in rat taste receptor cells // J. Neurosci. 2002. V. 22. P. 10018–10029. DOI: 10.1523/JNEUROSCI.22-22-10018.2002 EDN: YITDTF
76. Herness S., Zhao F.L. The neuropeptides CCK and NPY and the changing view of cell-to-cell communication in the taste bud // Physiol. Behav. 2009. V. 97. P. 581–591. DOI: 10.1016/j.physbeh.2009.02.043 EDN: MZZJKN
77. Herrera Moro Chao D., Argmann C., Van Eijk M. et al. Impact of obesity on taste receptor expression in extra-oral tissues: emphasis on hypothalamus and brainstem // Sci. Rep. 2016. V. 6. P. 29094. DOI: 10.1038/srep29094
78. Hubell C.L., Marglin S.H., Spitalnic S.J. et al. Opioidergic, serotonergic, and dopaminergic manipulations of rats’ intake of a sweetened alcoholic beverage //Alcohol. 1991. V. 8. P. 355–367. -f. DOI: 10.1016/0741-8329(91)90573
79. Hurtado M.D., Acosta A., Riveros P.P. et al. Distribution of y-receptors in murine lingual epithelia // PLoS One. 2012. V. 7. P. e46358. DOI: 10.1371/journal.pone.0046358
80. Iatridi V., Hayes J.E., Yeomans M.R. Quantifying sweet taste liker phenotypes: time for some consistency in the classification criteria // Nutrients. 2019a. V. 11. № 1. P. 129. DOI: 10.3390/nu11010129 EDN: IQKZZV
81. Iatridi V., Hayes J.E., Yeomans M.R. Reconsidering the classification of sweet taste liker phenotypes: a methodological review // Food Quality Pref. 2019b. V. 72. 56–76. DOI: 10.1016/j.foodqual.2018.09.001 EDN: TOHXQT
82. Inui T., Shimura T., Yamamoto T. The re-presentation of conditioned stimulus after acquisition of conditioned taste aversion increases ventral pallidum GABA release in rats // Neurosci. Res. 2007. V. 58. P. 67. DOI: 10.1016/j.neures.2007.06.397
83. Inoue, M., Glendinning, J. I., Theodorides, M. L. et al. Allelic variation of the Tas1r3 taste receptor gene selectively affects taste responses to sweeteners: evidence from 129.B6-Tas1r3 congenic mice // Physiol. Genomics 2007. V. 32. Iss. 1. P. 82–94. DOI: 10.1152/physiolgenomics.00161.2007
84. Ishimaru Y. Molecular mechanisms of taste transduction in vertebrates // Odontology. 2009. V. 97. P. 1–7. -y. DOI: 10.1007/s10266-008-0095 EDN: MMZMZN
85. Jiang P., Cui M., Zhao B. et al. Lactisole interacts with the transmembrane domains of human T1R3 to inhibit sweet taste // J. Biol. Chem. 2005. V. 280. № 15. P. 15238–15246. DOI: 10.1074/jbc.M414287200
86. Jiang P., Josue J., Li X. et al. Major taste loss in carnivorous mammals // PNAS. 2012. V. 103. Iss. 13. P. 4956–4961. DOI: 10.1073/pnas.1118360109
87. Kampov-Polevoy A.B., Garbutt J.C., Janowsky D.S. Association between preference for sweets and excessive alcohol intake: a rewiev of animal and human studies // Alcohol Alcohol. 1999. V. 34. Iss. 3. P. 386–395. DOI: 10.1093/alcalc/34.3.386
88. Kampov-Polevoy A.B., Garbutt J.C., Khalitov, E. Family history of alcoholism and response to sweets // Alcohol: Clin. Exp. Res. 2003. V. 27. Iss. 11. P. 1743–1749. DD. DOI: 10.1097/01.ALC.0000093739.05809 EDN: MALGJV
89. Kampov-Polevoy A.B., Tsoi M.V., Zvartau E.E., Neznanov N.G., Khalitov E. Sweet licking and family history of alcoholism in hospitalized alcoholic and non-alcoholic patients // Alcohol Alcohol. 2001. V. 36. Iss. 2. P. 165-170. DOI: 10.1093/alcalc36.2.165 EDN: LGMCFD
90. Kang L, Routh V.H., Kuzhikandathil E.V. et al. Physiological and molecular characteristics of rat hypothalamic ventromedial nucleus glucosensing neurons // Diabetes. 2004. V. 53. Iss. 3. P. 549–559. DOI: 10.2337/diabetes.53.3.549
91. Karádi Z., Lukáts B., Papp S. et al. Involvement of forebrain glucosemonitoring neurons in taste information processing: electrophysiological and behavioral studies // Chem. Senses. 2005. V. 30. P. 168–169. 10.1093 /chemse/bjh167. DOI: 10.1093/chemse/bjh167 EDN: INEPFT
92. Kawai K., Sugimoto K., Nakashima K., Miura H., Ninomiya Y.C. Leptin as a modulator of sweettaste sensitivities in mice // Proc. Natl. Acad. Sci. USA. 2000. V. 97. P. 11044–11049. DOI: 10.1073/pnas.190066697
93. Kiefer S.W., Lawrence G.J. The sweet-bitter taste of alcohol: aversion generalized to various sweet-quinine mixtures in the rat // Chem. Senses. 1988. V. 13. P. 633–641. DOI: 10.1093/chemse/13.4.633 EDN: INELSZ
94. Kiefer S.W., Mahadevan R.S. The taste of alcohol for rats as revealed by aversion generalization tests // Chem. Senses. 1993. V. 18. P. 509-522. DOI: 10.1037//0735-7044.102.5.733 EDN: INFNUZ
95. Kim U.K., Wooding S., Riaz N. et al. Variation in the human TAS1R Taste receptor genes // Chem. Senses. 2006. V. 31. Iss. 7. P. 599–611. DOI: 10.1093/chemse/bjj065 EDN: INEWPR
96. Kinnamon S.C., Finger T.E. Recent advances in taste transduction and signaling // F1000Res. 2019. V. 8(F1000 Faculty Rev-2117). DOI: 10.12688/f1000research.21099.1 EDN: UADDQT
97. Kohno D. Sweet taste receptor in the hypothalamus: a potential new player in glucose sensing in the hypothalamus // J. Physiol. Sci. 2017. V. 67. P. 459–465. -y. DOI: 10.1007/s12576-017-0535 EDN: VMKSZV
98. Kohno D., Koike M., Ninomiya Y. et al. Sweet taste receptor serves to activate glucose- and leptinresponsive neurons in the hypothalamic arcuate nucleus and participates in glucose responsiveness // Front. Neurosci. 2016. V. 10. P. 502. DOI: 10.3389/fnins.2016.00502
99. Kosse C., Gonzalez A., Burdakov D. Predictive models of glucose control: roles for glucose-sensing neurons // Acta Physiol. 2015. V. 213. Iss. 1. P. 7–18. DOI: 10.1111/apha.12360 EDN: XZBFKP
100. Kosobud A.E., Harris G.C., Chapin J.K. Behavioral associations of neuronal activity in the ventral tegmental area of the rat // J. Neurosci. 1994. V. 14. P. 7117–7129. DOI: 10.1523/JNEUROSCI.14-11-07117.1994
101. Kusakabe T., Matsuda H., Gono Y. et al. Immunohistochemical localisation of regulatory neuropeptides in human circumvallate papillae // J. Anat. 1998. V. 192. P. 557–564. DOI: 10.1046/j.1469-7580.1998.19240557
102. Lapis T.J., Penner M.H., Lim J. Humans can taste glucose oligomers independent of the hT1R2/hT1R3 Sweet Taste Receptor // Chem. Senses. 2016. V. 41. P. 755–762. DOI: 10.1093/chemse/bjw088
103. Lavi K., Jacobson G.A., Rosenblum K., Lüthi A. Encoding of conditioned taste aversion in cortico-amygdala circuits // Cell Rep. 2018. V. 24. P. 278-283. DOI: 10.1016/j.celrep.2018.06.053
104. Lazutkaite G., Soldà A., Lossow K., Meyerhof W., Dale N. Amino acid sensing in hypothalamic tanycytes via umami taste receptors // Mol. Metab. 2017. V. 6. №11. P. 1480–1492. DOI: 10.1016/j.molmet.2017.08.015
105. Lawrence G.J., Kiefer S.W. Generalization of specific taste aversions to alcohol in the rat // Chem. Senses. 1987. V. 12. P. 591–599. DOI: 10.1093/chemse/12.4.591 EDN: INEUSL
106. Le Roux C.W., Bueter M., Theis N. et al. Gastric bypass reduces fat intake and preference // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011. V. 301. P. 1057–1066. DOI: 10.1152/ajpregu.00139.2011
107. Lee K., Dixon A.K., Rowe I.C., Ashford M.L., Richardson P.J. The high-affinity sulphonylurea receptor regulates KATP channels in nerve terminals of the rat motor cortex // J. Neurochem. 1996. V. 66. P. 2562–2571. x. DOI: 10.1046/j.1471-4159.1996.66062562
108. Leloup C., Arluison M., Lepetit N. et al. Glucose transporter 2 (GLUT 2): expression in specific brain nuclei // Brain Res. 1994. V. 638. № 1-2. P. 221-226. -x. DOI: 10.1016/0006-8993(94)90653
109. Lemon C.H., Brasser S.M., Smith D.V. Alcohol activates a sucrose-responsive gustatory neural pathway // J. Neurophysiol. 2004. V. 92. P. 536–544. DOI: 10.1152/jn.00097.2004 EDN: NEKLVP
110. Lemon C.H., Margolskee R.F. Contribution of the T1r3 taste receptor to the response properties of central gustatory neurons // J. Neurophysiol. 2009. V. 101. № 5. P. 2459–2471. DOI: 10.1152/jn.90892.2008
111. Lemus-Mondaca R., Vega-Gálvez A., Zura-Bravo L., Ah-Hen K. Stevia rebaudiana Ber-toni, source of a highpotency natural sweetener: A comprehensive review on the bio-chemical, nutritional and functional aspects // Food Chem. 2012. V. 132. № 3. P. 1121–1132. DOI: 10.1016/j.foodchem.2011.11.140 EDN: PISKYT
112. Levitan D., Lin J.-Y., Wachutka J. et al. Single and population coding of taste in the gustatory cortex of awake mice // J. Neurophysiol. 2019. V. 122. P. 1342-1356. DOI: 10.1152/jn.00357.2019
113. Li X., Inoue M., Reed D.R., Huque T. et al. High-resolution genetic mapping of the saccharin preference locus (Sac) and the putative sweet taste receptor (T1R1) gene (Gpr70) to mouse distal Chromosome 4 // Mamm. Genome. 2001. V. 12. № 1. P. 13–16. DOI: 10.1007/s003350010236 EDN: AUZTMX
114. Livneh Y., Ramesh R.N., Burgess C.R. et al. Homeostatic circuits selectively gate food cue responses in insular cortex // Nature. 2017. V. 546. P. 611-616.10.1038/nature2237 5. DOI: 10.1038/nature22375
115. Loney G.C., Blonde G.D., Eckel L.A., Spector A.C. Determinants of taste preference and acceptability: quality versus hedonics // J. Neurosci. 2012. V. 32. P. 10086–10092. 10.1523/ JNEUROSCI.6036-11.2012. DOI: 10.1523/JNEUROSCI.6036-11.2012
116. Looy H., Callaghan S., Weingarten H.P. Hedonic response of sucrose likers and dislikers to other gustatory stimuli // Physiol. Behav. 1992. V. 52. № 2. P. 219–225. -y. DOI: 10.1016/0031-9384(92)90261
117. Looy H., Weingarten H.P. Effects of metabolic state on sweet taste reactivity in humans depend on underlying hedonic response profile // Chem. Sens. 1991. V. 16. № 2. P. 123–130. DOI: 10.1093/chemse/16.2.123 EDN: INEXQF
118. Lukáts B., Papp S., Szalay C. et al. Gustatory neurons in the nucleus accumbens and the mediodorsal prefrontal cortex of the rat // Acta Physiol. Hung. 2002. V. 89. P. 250.
119. Mahoney S.A., Hosking R., Farrant S. et al. The second galanin receptor GalR2 plays a key role in neurite outgrowth from adult sensory neurons // J. Neurosci. 2003. V. 23. P. 416–421. DOI: 10.1523/JNEUROSCI.23-02-00416.2003
120. Margolskee R.F. Molecular mechanisms of bitter and sweet taste transduction // J. Biol. Chem. 2002. V. 277. P. 1–4. DOI: 10.1074/jbc.R100054200 EDN: YJHITX
121. Martin B., Dotson C.D., Shin Y.K. et al. Modulation of taste sensitivity by GLP-1 signaling in taste buds // Ann. N. Y. Acad. Sci. 2009. V. 1170. P. 98–101. x. DOI: 10.1111/j.1749-6632.2009.03920
122. Martin B., Shin Y.K., White C.M. et al. Vasoactive intestinal peptide-null mice demonstrate enhanced sweet taste preference, dysglycemia, and reduced taste bud leptin receptor expression // Diabetes. 2010. V. 59. P. 1143–1152. DOI: 10.2337/db09-0807 EDN: MYKEEF
123. Maruyama Y., Pereira E., Margolskee R.F., Chaudhari N., Roper S.D. Umami responses in mouse taste cells indicate more than one receptor // J. Neurosci. 2006. V. 26. P. 2227–2234. DOI: 10.1523/JNEUROSCI.4329-05.2006
124. Masubuchi Y., Nakagawa Y., Ma J. et al. A novel regulatory function of sweet taste-sensing receptor in adipogenic differentiation of 3T3-L1 cells // PLoS One. 2013. V. 8. P. e54500. DOI: 10.1371/journal.pone.0054500 EDN: RJKVXJ
125. Merigo F., Benati D., Cristofoletti M. et al. Glucose transporters are expressed in taste receptor cells // J. Anat. 2011. V. 219. P. 243–252. x. DOI: 10.1111/j.1469-7580.2011.01385
126. Mueller K.L., Hoon M.A., Erlenbach I. et al. The receptors and logic for bitter taste // Nature. 2005. V. 434. P. 225–229. DOI: 10.1038/nature03352
127. Murovets V.O., Bachmanov A.A., Zolotarev V.A. Impaired glucose metabolism in mice lacking the Tas1r3 taste receptor gene. PLoS One. 2015. V. 10. № 6. P. e0130997. DOI: 10.1371/journal.pone.0130997 EDN: UPJEUB
128. Murovets V.O., Lukina E.A., Sozontov E.A. et al. Allelic variation of the Tas1r3 taste receptor gene affects sweet taste responsiveness and metabolism of glucose in F1 mouse hybrids // PLoS One. 2020. V. 15. № 7. P. e0235913. DOI: 10.1371/journal.pone.0235913 EDN: HJITBV
129. Murovets V.O., Zolotarev V.A., Bachmanov A.A. The role of the Sac locus in the alcohol taste preference in inbred mouse strains // Dokl. Biol. Sci. 2010. V. 432. P. 181–183. X. DOI: 10.1134/S001249661003004 EDN: MXLKOT
130. Nakamura Y., Sanematsu K., Ohta R. et al. Diurnal variation of human sweet taste recognition thresholds is correlated with plasma leptin levels // Diabetes. 2008. V. 57. P. 2661–2665. DOI: 10.2337/db07-1103
131. Nelson G., Hoon M.A., Chandrashekar J. et al. Mammalian sweet taste receptors // Cell. 2001. V. 106. P. 381–390. DOI: 10.1016/s0092-8674(01)00451-2
132. Nie, Y., Vigues, S., Hobbs, J. R. et al. Distinct contributions of T1R2 and T1R3 taste receptor subunits to the detection of sweet stimuli // Curr. Biol. 2005. V. 15. Iss. 21. P. 1948—1952. PMID:. DOI: 10.1016/j.cub.2005.09.03716271873
133. Noel C., Dando R. The effect of emotional state on taste perception // Appetite. 2015. V. 95. P. 89–95. DOI: 10.1016/j.appet.2015.06.003
134. Ogura T. Acetylcholine increases intracellular Ca2+ in taste cells via activation of muscarinic receptors // J. Neurophysiol. 2002. V. 87. P. 2643–2649. DOI: 10.1152/jn.2002.87.6.2643 EDN: LYGUBR
135. Ohkuri, T., Yasumatsu K., Horio N. et al. Multiple sweet receptors and transduction pathways revealed in knockout mice by temperature dependence and gurmarin sensitivity // Am. J. Physiol. (2009). V. 296. № 4. P. 960-971. DOI: 10.1152/ajpregu.91018.2008
136. Oka Y., Butnaru M., von Buchholtz L. et al. High salt recruits aversive taste pathways // Nature. 2013. V. 494. P. 472-475. DOI: 10.1038/nature11905
137. O’Malley D., Reimann F., Simpson A.K., Gribble F.M. Sodium-coupled glucose cotransporters contribute to hypothalamic glucose sensing // Diabetes. 2006. V. 55. № 12. P. 3381–3386. DOI: 10.2337/db06-0531
138. Ootani S., Umezaki T., Shin T., Murata Y. Convergence of afferents from the SLN and GPN in cat medullary swallowing neurons // Brain Res. Bull. 1995. V. 37. P. 397-404. DOI: 10.1016/0361-9230(95)00018-6
139. Ozcan S., Dover J., Rosenwald A.G., Wölfl S., Johnston M. Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression // Proc. Natl. Acad. Sci. U S A. 1996. V. 93. № 22. P. 12428–12432. DOI: 10.1073/pnas.93.22.12428
140. Pelchat M.L., Danowski S. A possible genetic association between PROP-tasting and alcoholism // Physiol. Behav. 1992. V. 51. № 6. P. 1261–1266. -v. DOI: 10.1016/0031-9384(92)90318
141. Peng Y., Gillis-Smith S., Jin H. et al. Sweet and bitter taste in the brain of awake behaving animals // Nature. 2015. V. 527. P. 512-515. 10.1038/nature1576 3. DOI: 10.1038/nature15763
142. Porcu E., Benz K., Ball F. et al. Macroscopic information-based taste representations in insular cortex are shaped by stimulus concentration // PNAS. 2020. V. 117. № 13. P. 7409–7417. DOI: 10.1073/pnas.1916329117 EDN: QEUHXI
143. Pucilowski O., Rezvani A.H., Janowsky D.S. Suppression of alcohol and saccharin preference in rats by a novel Ca2+ channel inhibitor, Goe 5438 // Psychopharmacology. 1992. V. 107. P. 447–452. DOI: 10.1007/BF02245174 EDN: SBMYZQ
144. Ramos-Lopez O., Panduro A., Martinez-Lopez E. et al. Sweet taste receptor TAS1R2 polymorphism (Val191Val) is associated with a higher carbohydrate intake and hypertriglyceridemia among the population of West Mexico // Nutrients. 2016. V. 8. № 2. P 101. DOI: 10.3390/nu8020101 EDN: WUORFL
145. Ren X., Zhou L., Terwilliger R., Newton S.S., de Araujo I.E. Sweet taste signaling functions as a hypothalamic glucose sensor // Front. Integr. Neurosci. 2009. V. 3. P. 12. DOI: 10.3389/neuro.07.012.2009
146. Reed D.R., Li S., Li X. et al. Polymorphisms in the taste receptor gene (Tas1r3) region are associated with saccharin preference in 30 mouse strains // J. Neurosci. 2004. V. 24. № 4. P. 938–946. DOI: 10.1523/JNEUROSCI.1374-03.2004
147. Ricardo J.A., Koh E.T. Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat // Brain Res. 1978. V. 153. P. 1–26. DOI: 10.1016/0006-8993(78)91125-3
148. Riera C.E., Vogel H., Simon S. A. et al. Sensory attributes of complex tasting divalent salts are mediated by TRPM5 and TRPV1 channels // J. Neurosci. 2009. V. 29. Iss. 8. P. 2654–2662. DOI: 10.1523/JNEUROSCI.4694-08.2009
149. Robino A., Bevilacqua L., Pirastu N. et al. Polymorphisms in sweet taste genes (TAS1R2 and GLUT2), sweet liking, and dental caries prevalence in an adult Italian population // Genes Nutr. 2015. V. 10. №. P. 485. DOI: 10.1007/s12263-015-0485-z EDN: USGBBN
150. Robinson T.G., Beart P.M. Excitant amino acid projections from rat amygdala and thalamus to nucleus accumbens // Brain Res. Bull. 1988. V. 20. P. 467–471. DOI: 10.1016/0361-9230(88)90136-0
151. Roper S.D. Signal transduction and information processing in mammalian taste buds // Pflügers Archiv. 2007. V. 454. P. 759–776. -x. DOI: 10.1007/s00424-007-0247 EDN: MMZMMB
152. Roper S.D., Chaudhari N. Taste buds: cells, signals and synapses // Nat. Rev. Neurosci. 2017. V. 18. P. 485–497. DOI: 10.1038/nrn.2017.68 EDN: YIQIFB
153. Sainz E., Cavenagh M.M., LopezJimenez N.D. et al. The G-protein coupling properties of the human sweet and amino acid taste receptors // Dev. Neurobiol. 2007. V. 67. P. 948-959. DOI: 10.1002/dneu.20403
154. Sako N, Yamamoto T. Electrophysiological and behavioral studies on taste effectiveness of alcohols in rats // Am. J. Physiol. 1999. V.276. P. 388–396. DOI: 10.1152/ajpregu.1999.276.2.R388 EDN: KJFPHP
155. Saper C.B. Convergence of autonomic and limbic connections in the insular cortex of the rat // J. Comp. Neurol. 1982. V. 210. P. 163–173. DOI: 10.1002/cne.902100207
156. Schwartz M.W., Woods S.C., Porte D.J., Seeley R.J., Baskin D.G. Central nervous system control of food intake // Nature. 2000. V. 404. P. 661–671. DOI: 10.1038/35007534
157. Sclafani A., Ackroff K. Role of gut nutrient sensing in stimulating appetite and conditioning food preferences // Am. J. Physiol. 2012. V. 302. P. 1119–1133. DOI: 10.1152/ajpregu.00038.2012 EDN: PGNDOX
158. Sclafani A., Glass D.S., Margolskee R.F., Glendinning J.I. Gut T1R3 sweet taste receptors do not mediate sucrose-conditioned flavor preferences in mice // Am. J. Physiol. 2010. V. 299, P. 1643–1650. DOI: 10.1152/ajpregu.00495.2010 EDN: NZPCUJ
159. Sclafani A., Koepsell H., Ackrof K. SGLT1 sugar transporter/sensor is required for post-oral glucose appetition // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016. V. 310. P. 631–639. DOI: 10.1152/ajpregu.00432.2015
160. Seta Y., Kataoka S., Toyono T., Toyoshima K. Expression of galanin and the galanin receptor in rat taste buds // Arch. Histol. Cytolog. 2006. V. 69. P. 273–280. DOI: 10.1679/aohc.69.273
161. Shahbandi A.A., Choo E., Dando R. Receptor regulation in taste: can diet influence how we perceive foods? // J: Multidiscip. Sci. J. 2018. V. 1. P. 106–115. DOI: 10.3390/j1010011
162. Shen T., Kaya N., Zhao F.L. et al. Co-expression patterns of the neuropeptides vasoactive intestinal peptide and cholecystokinin with the transduction molecules alpha-gustducin and T1R2 in rat taste receptor cells // Neurosci. 2005. V. 130. P. 229–238. DOI: 10.1016/j.neuroscience.2004.09.017
163. Shi C.-J., Cassell M.D. Cortical, thalamic, and amygdaloid connections of the anterior and posterior insular cortices // J. Comp. Neurol. 1998. V. 399. P. 440–468. 3.0.co;2-1“ xmlns:xlink=“http://www.w3.org/1999/xlink”> 399:43.0.co;2-1. DOI: 10.1002/(sici)1096-9861(19981005)
164. Shimura T., Imaoka H., Okazaki Y. et al. Involvement of the mesolimbic system in palatability-induced ingestion // Chem. Senses. 2005. V. 30. P. 188–189. DOI: 10.1093/chemse/bjh177
165. Shimura T., Imaoka H., Yamamoto T. Neurochemical modulation of ingestive behavior in the ventral pallidum // Eur. J. Neurosci. 2006. V. 23. P. 1596–1604. x. DOI: 10.1111/j.1460-9568.2006.04689
166. Shimura T., Kamada Y., Yamamoto T. Ventral tegmental lesions reduce overconsumption of normally preferred taste fluid in rats // Behav. Brain Res. 2002. V. 134. P. 123–130. DOI: 10.1016/s0166-4328(01)00461-2
167. Shin A.C., Townsend R.L., Patterson L.M., Berthoud H.R. “Liking” and “wanting” of sweet and oily food stimuli as affected by high-fat diet-inducedobesity, weight loss, leptin, and genetic predisposition // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011. V. 301. P. 1267–1280. DOI: 10.1152/ajpregu.00314.2011
168. Shin Y.K., Martin B., Golden E. et al. Modulation of taste sensitivity by GLP-1 signaling // J. Neurochem. 2008. V. 106. P. 455–463. x. DOI: 10.1111/j.1471-4159.2008.05397 EDN: MJZUCL
169. Shin Y.K., Martin B., Kim W. et al. Ghrelin is produced in taste cells and ghrelin receptor null mice show reduced taste responsivity to salty (NaCl) and sour (citric acid) tastants // PLoS One. 2010. V. 5 P. e12729. DOI: 10.1371/journal.pone.0012729 EDN: PLGMRX
170. Shoji S. Glucose regulation of synaptic transmission in the dorsolateral septal nucleus of the rat // Synapse. 1992. V. 12. P. 322–332. DOI: 10.1002/syn.890120409
171. Shrayyef M.Z., Gerich J.E. Normal Glucose Homeostasis / L. Poretsky Principles of Diabetes Mellitus. Boston: Springer, 2010. P. 19-35. DOI: 10.1007/978-0-387-09841-8_2
172. Sigoillot M., Brockhoff A., Neiers F. et al. The crystal structure of gurmarin, a sweet taste–suppressing protein: identification of the amino acid residues essential for inhibition // Chem. Senses. 2018. V. 43. P. 635–643. DOI: 10.1093/chemse/bjy054
173. Spector A.C. Linking gustatory neurobiology to behavior in vertebrates // Neurosci Biobehav. Rev. 2000. V. 24. P. 391-416. 10.1016/S0149-7634(00)00013 -0. DOI: 10.1016/S0149-7634(00)00013-0
174. Spector A.C., Klumpp PA., Kaplan J.M. Analytical issues in the evaluation of food deprivation and sucrose concentration effects on the microstructure of licking behavior in the rat // Behav. Neurosci. 1998. V. 112. P. 678–694. DOI: 10.1037//0735-7044.112.3.678 EDN: GSOKCT
175. Stratford T.R., Kelley A.E. Evidence of a functional relationship between the nucleus accumbens shell and lateral hypothalamus subserving the control of feeding behavior // J. Neurosci. 1999. V. 19. P. 11040–11048. DOI: 10.1523/JNEUROSCI.19-24-11040.1999
176. Sukumaran S.K., Yee K.K., Iwata S. et al. Taste cell expressed α-glucosidase enzymes contribute to gustatory responses to disaccharides // Proc. Natl. Acad. Sci. 2016. V. 113. P. 6035-6040. DOI: 10.1073/pnas.1520843113 EDN: YDBMLU
177. Thorens B. Brain glucose sensing and neural regulation of insulin and glucagon secretion // Diabetes Obes. Metab. 2011. V. 13(S.1). P. 82-88. DOI: 10.1111/j.1463-1326.2011.01453.x
178. Tichansky D.S., Glatt A.R., Madan A.K. et al. Decrease in sweet taste in rats after gastric bypass surgery // Surg. Endosc. 2011. V. 25. P. 1176–1181. DOI: 10.1007/s00464-010-1335-0 EDN: RRSRGB
179. Toda Y., Nakagita T., Hayakawa T. et al. Two distinct determinants of ligand specificity in T1R1/T1R3 (the umami taste receptor) // J. Biol. Chem. 2013. V. 288. Iss. 52. P. 36863–36877. DOI: 10.1074/jbc.M113.494443
180. Tokita K., Boughter J.D. Topographic organizations of taste-responsive neurons in the parabrachial nucleus of C57BL/6J mice: an electrophysiological mapping study // Neurosci. 2016. V. 316. P. 151–166. DOI: 10.1016/j.neuroscience.2015.12.030
181. Tomchik S.M., Berg S., Kim J.W. et al. Breadth of tuning and taste coding in mammalian taste buds // J. Neurosci. 2007. V. 27. P. 10840-10848. OSCI.1863-07.2007. DOI: 10.1523/JNEUR EDN: MJTDMT
182. Tordoff M.G. Calcium: taste, intake, and appetite // Physiol Rev. 2001. V. 81. P. 1567–1597. DOI: 10.1152/physrev.2001.81.4.1567
183. Umabiki M., Tsuzaki K., Kotani K. et al. The improvement of sweet taste sensitivity with decrease in serum leptin levels during weight loss in obese females // Tohoku J. Exp. Med. 2010. V. 220. P. 267–271. DOI: 10.1620/tjem.220.267
184. Veldhuizen M.G., Bender G., Constable R.T., Small D.M. Trying to detect taste in a tasteless solution: modulation of early gustatory cortex by attention to taste // Chem. Senses. 2007. V. 32. P. 569–581. DOI: 10.1093/chemse/bjm025 EDN: INFDQJ
185. Verberne A.J., Sabetghadam A., Korim W.S. Neural pathways that control the glucose counterregulatory response // Front. Neurosci. 2014 V. 8. № 38. DOI: 10.3389/fnins.2014.00038
186. von Molitor E., Riedel K., Krohn M. et al. Sweet taste is complex: signaling cascades and circuits involved in sweet sensation // Front. Hum. Neurosci. 2021. V. 15. P. 667709. DOI: 10.3389/fnhum.2021.667709 EDN: QMXKCA
187. Welcome M.O., Mastorakis N.E., Pereverzev V.A. Sweet taste receptor signaling network: Possible implication for cognitive functioning // Neurol. Res. Int. 2015. V. 15. P. 606479. DOI: 10.1155/2015/606479 EDN: XMKHHZ
188. Wright E.M., Loo D.D., Hirayama B.A. Biology of human sodium glucose transporters // Physiol. Rev. 2011. V. 1. № 2. P. 733–794. DOI: 10.1152/physrev.00055.2009
189. Wu A., Dvoryanchikov G., Pereira E. et al. Breadth of tuning in taste afferent neurons varies with stimulus strength // Nat. Commun. 2015. V. 6. P. 8171. DOI: 10.1038/ncomms9171
190. Yamamoto T., Matsuo R., Kiyomitsu Y., Kitamura R. Taste responses of cortical neurons in freely ingesting rats // J. Neurophysiol. 1989. V. 61. P. 1244–1258. DOI: 10.1152/jn.1989.61.6.1244
191. Yamamoto T., Sako N., Maeda S. Effects of taste stimulation on beta-endorphin levels in rat cerebrospinal fluid and plasma // Physiol. Behav. 2000. V. 69. P. 345–350. DOI: 10.1016/s0031-9384(99)00252-8
192. Yasumatsu K., Iwata S., Inoue M. et al. Fatty acid taste quality information via GPR120 in the anterior tongue of mice // Acta Physiol. (Oxf). 2019. V. 226. P. e13215. DOI: 10.1111/apha.13215
193. Yasumatsu K., Ohkuri T., Yoshida R. et al. Sodium-glucose cotransporter 1 as a sugar taste sensor in mouse tongue // Acta Physiol. (Oxf). 2020. V. 230. P. e13529. DOI: 10.1111/apha.13529 EDN: KKQLDB
194. Yee K.K., Sukumaran S.K., Kotha R. et al. Glucose transporters and ATP-gated K +(KATP) metabolic sensors are present in type 1 taste receptor 3 (T1r3)-expressing taste cells // Proc. Natl. Acad. Sci. USA. 2011. V. 108. P. 5431–5436. DOI: 10.1073/pnas.1100495108
195. Yoshida R., Niki M., Jyotaki M. et al. Modulation of sweet responses of taste receptor cells // Semin. Cell Dev. Biol. 2013. V. 24. P. 226–231. DOI: 10.1016/j.semcdb.2012.08.004
196. Young P.T., Burright R.G., Tromater L.J. Preferences of the white rat for solutions of sucrose and quinine hydrochloride // Am. J. Psychol. 1963. V. 76. P. 205–217.
197. Yu A.S., Hirayama B.A., Timbol G. et al. Functional expression of SGLTs in rat brain // Am. J. Physiol. Cell Physiol. 2010. V. 299. № 6. P. 1277–1284. DOI: 10.1152/ajpcell.00296.2010 EDN: NYZAGV
198. Zhang J., Jin H., Zhang W. et al. Sour sensing from the tongue to the brain // Cell. 2019. V. 179. P. 39-402. https://doi.org/. cell.2019.08.031https://doi.org/10.1016/j.
199. Zhang L., Han W., Lin C., Li F., Araujo I.E. Sugar metabolism regulates flavor preferences and portal glucose sensing // Front. Integr. Neurosci. 2018. V. 12. P. 57. DOI: 10.3389/fnint.2018.00057
200. Zhang Y., Hoon, M.A., Chandrashekar J. et al. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways // Cell. 2003. V. 112. Iss. 3. P. 293–301. DOI: 10.1016/s0092-8674(03)00071-0 EDN: YKNIJA
201. Zhao H., Li J., Zhang J. Molecular evidence for the loss of three basic tastes in penguins // Current Biology 2015. V. 25. P. 141–142. DOI: 10.1016/j.cub.2015.01.026
202. Zhao F.L., Shen T., Kaya N. et al. Expression, physiological action, and coexpression patterns of neuropeptide Y in rat taste-bud cells // Proc. Natl. Acad. Sci. U S A. 2005. V. 102. P. 11100–11105. DOI: 10.1073/pnas.0501988102
203. Zhao G.Q., Zhang Y., Hoon M.A. et al. The receptors for mammalian sweet and umami taste // Cell. 2003. V. 115. P. 255–266. DOI: 10.1016/s0092-8674(03)00844-4
Выпуск
Другие статьи выпуска
Фактор роста фибробластов (FGF21) является гормоном печени, который способствует адаптации организма к различным ситауциям, вызывающим напряжение систем метаболизма. В обзоре рассмотрены некоторые нерешенные вопросы, касающиеся физиологического действия этого уникального метаболического регулятора, суммированы основные знания о фармакологических свойствах FGF21 и освещены половые различия в их проявлении при коррекции ожирения. Обобщены результаты, показывающие, что эффективность использования FGF21 для терапии ожирения зависит от этиологии ожирения и пола. Подчеркивается необходимость исследования механизмов возникновения половых различий действия FGF21 для его успешного использования при лечении ожирения у особей мужского и женского пола.
Кортикотропин-рилизинг фактор (КРФ) и капсаицин-чувствительные афферентные нейроны с эфферентно-подобной функцией (КЧН) вносят важный вклад в регуляцию функций желудочно-кишечного тракта (ЖКТ) и гастропротекцию. Цель обзора заключалась в анализе данных литературы, в том числе и результатов собственных исследований, о взаимодействии КРФ и КЧН в обеспечении гастропротекции и регуляции функций ЖКТ, с фокусом на наиболее изученное их взаимодействие в регуляции моторной функции ЖКТ. На основании результатов исследований авторов обзора обсуждается возможность вклада КЧН в реализацию гастропротективного влияния КРФ и, наоборот, возможность участия КРФ в обеспечении гастропротективного действия капсацина, активирующего КЧН. Рассматривается вклад глюкокортикоидных гормонов в реализацию гастропротективного действия КРФ и компенсаторная гастропротективная роль данных гормонов в условиях выключения из функционирования КЧН.
Согласно современным представлениям, основу интеллектуальных проблем при нейрологических повреждениях мозга составляет активное забывание, регулируемое зависимыми от малых ГТФаз Rac и Rho сигнальными каскадами ремоделирования актина. Ключевой фермент этих каскадов – LIM-киназа 1 (LIMK1). Изменения экспрессии гена limk1 приводят к нейрокогнитивным патологиям. Для экспресс-скрининга и тестирования агентов целенаправленного терапевтического воздействия, изменяющих белок-белковые взаимодействия ГТФаз и компонентов сигнальных каскадов, необходимо создание и валидация простых животных моделей. Такую возможность предоставляет дрозофила, мутантные линии которой позволяют выявить узловые моменты пересечений биохимических и нервных сетей, сопровождающие активное забывание.
Наличие близких социальных связей – необходимое условие для психического и физического здоровья и благополучия в любом возрасте. Существенный процент населения Земли пережил условия “локдауна” в связи с пандемией COVID-19. Появляется все больше данных научной литературы, посвященных негативному воздействию социальной изоляции на внимание, память, восприятие, исполнительные функции и другие аспекты когнитивных процессов. Это может усложнять повседневную жизнь людей, снижая качество жизни. В обзоре предпринята попытка систематизации накопленных научных фактов о взаимосвязи социальной изоляции и развития нарушений когнитивных функций у человека, собранных в лонгитюдных популяционных исследованиях, а также проведен анализ данных о влиянии социальной изоляции разной длительности на процессы обучения и памяти, полученных в экспериментальных исследованиях на животных. Затронуты вопросы возможной связи этих нарушений, индуцированных социальной изоляцией, с изменением функционирования одной из систем стресс-реактивности – гипоталамо-гипофизарно-адреналовой оси и иммуновоспалительным ответом.
В обзоре представлены данные последних лет о восстановлении двигательных функций после спинальных травм: о спонтанной нейропластичности; о пластичности, зависящей от физической активности; о результатах использования эпидуральной и чрескожной электростимуляции спинного мозга для восстановления контроля движений; о нейрофизиологических изменениях и механизмах, инициируемых спинальной электростимуляцией, которые, возможно, способствуют функциональному восстановлению после травм спинного мозга.
Издательство
- Издательство
- ИЗДАТЕЛЬСТВО НАУКА
- Регион
- Россия, Москва
- Почтовый адрес
- 121099 г. Москва, Шубинский пер., 6, стр. 1
- Юр. адрес
- 121099 г. Москва, Шубинский пер., 6, стр. 1
- ФИО
- Николай Николаевич Федосеенков (Директор)
- E-mail адрес
- info@naukapublishers.ru
- Контактный телефон
- +7 (495) 2767735