Представлено устройство и рассмотрены особенности функционирования источника плазмы на основе тлеющего разряда атмосферного давления, основным назначением которого является получение потоков плазмы, содержащей металлический компонент. Приводится краткий обзор современного состояния методов генерации металлсодержащей плазмы при атмосферном давлении. Обозначены перспективы применения описываемой разрядной системы в исследованиях по получению ультрадисперсных порошков и функциональных покрытий.
Изучены особенности инжекции электронов из плазмы эмиттерного разряда в разрядную систему планарного магнетронного разряда. В качестве эмиттерного разряда использовались тлеющий разряд с полым катодом и вакуумная дуга. Инжекция электронов осуществлялась через центральное отверстие в мишени магнетрона. Давление рабочего газа (аргон) в вакуумной камере составляло 0,05–0,09 Па. Эмиттерный тлеющий разряд в полом катоде функционировал как в слаботочном непрерывном режиме (10–100 мА), так и сильноточном импульсном режиме (10–20 А, 25 мкс, 1 Гц). Вакуумный дуговой эмиттер функционировал в импульсном режиме (10–60 А, 200 мкс, 1 Гц). Измерены токи эмиссии для различных конфигураций разрядной системы, в том числе определены условия, обеспечивающие полное переключение электронного компонента тока эмиттера в разрядную систему магнетронного распылителя.
Представлены результаты экспериментальных исследований разрядной системы на основе импульсного (200400 мкс, 525 Гц) сильноточного (530 А) планарного магнетронного разряда с мишенью диаметром 125 мм и дополнительной инжекцией электронов из вакуумного дугового разряда. Инжекция электронов в магнетронный разряд осуществляется с обратной стороны распыляемой мишени через центральное отверстие, что обеспечивает дополнительное ускорение инжектируемых электронов в катодном слое магнетронного разряда и увеличение энергетической эффективности разрядной системы. Исследован масс-зарядовый состав ионов генерируемой плазмы при снижении рабочего давления вплоть до предельно низкого уровня 0,2 мТорр. Получены условия обеспечения высокой доли ионов материала мишени в генерируемой плазме, в том числе в диапазоне низких значений рабочего давления, где стандартный магнетронный разряд характеризуется увеличением доли ионов рабочего газа и переходит в высоковольтную слаботочную форму.
Исследованы особенности работы разрядной системы на основе планарного магнетрона с дополнительной инжекцией электронов и коническим отражающим электродом. Инжекция электронов осуществлялась из тлеющего разряда с полым катодом, размещенным с обратной стороны мишени. Мишень магнетронного разряда диаметром 125 мм была выполнена из меди. Давление рабочего газа (аргон) варьировалось в диапазоне от 3 до 0,5 мТорр. Разряды функционировали в непрерывном режиме. Представлены результаты влияния отражающего электрода на радиальную однородность генерируемой плазмы, а также степень его распыления. Исследовано влияние рабочего давления на радиальную однородность, поверхностную и фазовую структура осаждаемых пленок меди.
Представлены принцип работы и конструкция планарного магнетрона для нанесения покрытий из чистого бора. Особенностью устройства является использование термоизолированного катода-мишени из чистого кристаллического бора, нагреваемого вспомогательным слаботочным разрядом для обеспечения стабильного функционирования магнетронного разряда. Это позволяет реализовать в магнетроне как непрерывный режим работы, так и импульсный режим самораспыления, при котором в плазме разряда ионы бора превалируют над ионами рабочего газа. Другой особенностью магнетрона является использование щелевого анода специальной конструкции, обеспечивающего стабильную и длительную работу устройства при осаждении на поверхность анода неэлектропроводной пленки бора. При использовании импульсного разряда с амплитудой тока 40 А при длительности импульсов 400 мкс и частоте их повторения 25 Гц скорость нанесения покрытий из чистого бора на подложку, установленную на расстоянии 10 см от катода, была сравнима со скоростью нанесения покрытий в магнетронном разряде с постоянным током 300 мА и составляла 20-30 нм/мин.