EISSN 1726-3522
Язык: ru

Архив статей журнала

ВЛИЯНИЕ ДВУМЕРНЫХ ЭФФЕКТОВ НА ВЗАИМОДЕЙСТВИЕ УДАРНОЙ ВОЛНЫ С ОБЛАКОМ ЧАСТИЦ (2020)
Выпуск: Т. 21 № 3 (2020)
Авторы: Волков Константин Николаевич, ЕМЕЛЬЯНОВ ВЛАДИСЛАВ НИКОЛАЕВИЧ, Карпенко Антон Геннадьевич, Тетерина Ирина Владимировна

В рамках статистического подхода, основанного на кинетическом уравнении для функции плотности вероятности распределения скорости и температуры частиц, построена континуальная модель, описывающая псевдотурбулентные течения дисперсной фазы. Введение функции плотности вероятности позволяет получить статистическое описание ансамбля частиц вместо динамического описания отдельных частиц на основе уравнений движения и теплопереноса типа Ланжевена. На основе уравнений для первых и вторых моментов дисперсной фазы проводится численное моделирование нестационарного течения газовзвеси, возникающего при взаимодействии ударной волны с облаком частиц. Основные уравнения имеют гиперболический тип, записываются в консервативной форме и решаются с использованием численного метода типа Годунова повышенного порядка точности. Обсуждается влияние двумерных эффектов на формирование ударно-волновой структуры течения и пространственно-временны´е зависимости концентрации частиц и других параметров потока.

Сохранить в закладках
ОБ ОДНОЙ НЕЛИНЕЙНОЙ ПАРАБОЛИЧЕСКОЙ ЗАДАЧЕ С ГРАНИЧНЫМ УПРАВЛЕНИЕМ И О ЕЕ ПРИЛОЖЕНИЯХ (2020)
Выпуск: Т. 21 № 3 (2020)
Авторы: Гольдман Наталия Львовна

Рассматривается проблема оптимального управления системой, состоящей из краевой задачи первого рода для квазилинейного параболического уравнения с неизвестным коэффициентом, а также из уравнения изменения по времени этого коэффициента. Обоснованы две постановки вариационных задач с финальным наблюдением, в которых управлением является граничный режим на одной из границ области. Доказаны свойства непрерывности и дифференцируемости соответствующих минимизируемых функционалов. Дано явное представление для дифференциалов через решение сопряженных задач. Установлен вид этих сопряженных задач, доказана их однозначная разрешимость в классе гладких функций. Проведенное исследование связано с моделированием и управлением физико-химическими процессами с изменяющимися внутренними свойствами материалов.

Сохранить в закладках
ВЫЧИСЛЕНИЕ РЕСУРСОВ И АНАЛИЗ ЭФФЕКТИВНОСТИ СТРАТЕГИЙ В ИГРОВОЙ МОДЕЛИ ПРОТИВОБОРСТВА (2020)
Выпуск: Т. 21 № 3 (2020)
Авторы: Мусаева Милана Абуевна

Сформулирована игровая модель противоборства в виде модели “нападение и защита”, указаны способы вычисления ресурсов сторон, анализированы эффективность их стратегий и установлены условия существования оптимального решения рассматриваемых задач.

Сохранить в закладках
ПАРАЛЛЕЛЬНЫЕ АЛГОРИТМЫ РЕШЕНИЯ ЗАДАЧИ ДИНАМИКИ ИЗМЕНЕНИЯ РЕЛЬЕФА ДНА В ПРИБРЕЖНЫХ СИСТЕМАХ (2020)
Выпуск: Т. 21 № 3 (2020)
Авторы: Чистяков Александр Евгеньевич, Проценко Елена Анатольевна, Проценко Софья Владимировна, Сидорякина Валентина Владимировна, Сухинов Александр Иванович

Предложена нестационарная 2D-модель транспорта донных отложений в прибрежной зоне мелководных водоемов, дополненная уравнениями Навье–Стокса, неразрывности и состояния водной среды. Дискретная модель транспорта наносов получена в результате аппроксимации соответствующей линеаризованной непрерывной модели. Поскольку задачи прогнозирования транспорта наносов требуют решения в реальном или ускоренном масштабах времени, на сетках, включающих 106–109 узлов, необходима разработка параллельных алгоритмов задач гидродинамики на системах с массовым параллелизмом. Представлены результаты работы созданного эффективного программного обеспечения для выполнения гидродинамических вычислительных экспериментов, позволяющие проводить численное моделирование деформации дна в прибрежной зоне водоема. Приведены результаты численных экспериментов.

Сохранить в закладках
ВОЗМОЖНОСТИ МНОГОЯДЕРНЫХ ПРОЦЕССОРОВ MALT В ЗАДАЧАХ ОБРАБОТКИ ИЗОБРАЖЕНИЙ (2020)
Выпуск: Т. 21 № 2 (2020)
Авторы: Михеев Н. Г., Антонюк Валерий Алексеевич, Елизаров Сергей Георгиевич, Лукьянченко Георгий Александрович

В статье рассматриваются результаты экспериментальной оценки производительности и энерго-эффективности многоядерных процессоров MALT в задачах обработки изображений на примере фильтрации изображения с помощью оператора Собеля. Измерения осуществлялись с использованием низкоуровневого эмулятора MALTemu, прототипа процессора в ПЛИС и экспериментальной СБИС модели MALT-Cv2 Rev1. Полученные результаты сравниваются с аналогичными результатами для процессоров общего назначения (последовательная реализация) и графических процессоров с поддержкой технологии CUDA.

Сохранить в закладках
ВЫДЕЛЕНИЕ ТРЕХ УРОВНЕЙ ЯРКОСТИ НА ЗАШУМЛЕННОМ ИЗОБРАЖЕНИИ (2020)
Выпуск: Т. 21 № 2 (2020)
Авторы: Лихачев Алексей Валерьевич

Предложен новый метод восстановления изображений, имеющих три неизвестные градации яркости. Для их определения используются фрагменты изображения, гистограммы которых согласуются с заданным распределением шума. Далее все пиксели распределяются по найденным уровням яркости посредством бинарной классификации. Выполнен вычислительный эксперимент, по результатам которого оказалось, что ошибка оценки исходных яркостей не превысила 3%. При относительно низком уровне шума доля неверно классифицированных пикселей от их общего числа составила менее 0.006.

Сохранить в закладках
ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ СТАТИСТИЧЕСКИХ МОМЕНТОВ МАГНИТНОГО ПОЛЯ В ОДНОЙ ЗАДАЧЕ ГАЛАКТИЧЕСКОГО ДИНАМО С НЕЛИНЕЙНОСТЬЮ (2020)
Выпуск: Т. 21 № 2 (2020)
Авторы: Грачев Денис Александрович, Елистратов C. A.

Рассматривается нелинейная модификация стохастической модели галактического динамо, в рамках которой коэффициент, отвечающий за турбулентную диффузию, полагается случайным процессом с обновлением. Показано, что при малых значениях напряженности магнитного поля его статистические моменты ведут себя примерно так же, как и в линейной модели (в частности, продемонстрировано наличие эффекта перемежаемости). Получены оценки для характерных времен выхода моментов на стабилизацию, которая наступает по мере приближения поля к равновесному значению. Проведено сопоставление результатов численного эксперимента, полученных при усреднении различных объемов выборки независисмых случайных реализаций поля.

Сохранить в закладках
О ВЫЧИСЛЕНИИ ФУНКЦИОНАЛОВ МИНКОВСКОГО ЧЕТЫРЕХМЕРНЫХ ЦИФРОВЫХ ИЗОБРАЖЕНИЙ (2020)
Выпуск: Т. 21 № 2 (2020)
Авторы: Богоявленская Ольга Анатольевна

Функционалы Минковского являются важным инструментом для изучения морфологии пористых сред. Настоящая работа посвящена построению алгоритма вычисления функционалов Минковского четырехмерных цифровых изображений, возникающих, в частности, при описании динамики изменения порового пространства среды. В работе впервые программно реализован алгоритм вычисления функционалов Минковского четырехмерных цифровых изображений.

Сохранить в закладках
ВЫЧИСЛИТЕЛЬНЫЙ АЛГОРИТМ ДЛЯ РЕШЕНИЯ ЗАДАЧИ УПАКОВКИ ШАРОВ ДВУХ РАЗЛИЧНЫХ ТИПОВ В ТРЕХМЕРНОЕ МНОЖЕСТВО С НЕЕВКЛИДОВОЙ МЕТРИКОЙ (2020)
Выпуск: Т. 21 № 2 (2020)
Авторы: Казаков Александр Леонидович, Лемперт Анна Ананьевна, Та Ч. Т.

Рассматривается задача упаковки шаров двух типов в замкнутое ограниченное множество в трехмерном пространстве как с евклидовой, так и со специальной неевклидовой метрикой. Требуется максимизировать радиус шаров при известном количестве шаров каждого типа и заданном отношении между радиусами. Предложен вычислительный алгоритм, основанный на комбинации метода бильярдного моделирования и оптико-геометрического подхода, базирующегося на фундаментальных физических принципах Ферма и Гюйгенса. Приведены результаты вычислительного эксперимента.

Сохранить в закладках
ПРОГРАММНЫЙ КОМПЛЕКС ДЛЯ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ РАЗРУШЕНИЯ ТЕРМОПОРОУПРУГОЙ СРЕДЫ (2020)
Выпуск: Т. 21 № 2 (2020)
Авторы: Меретин Алексей Сергеевич

Приведено описание программного комплекса для математического моделирования эволюции термопороупругой среды с учетом ее разрушения. Используемая математическая модель является модификацией модели Био для случая термопороупругих сред и позволяет моделировать изменение напряженно-деформированного состояния среды, фильтрацию флюида, неизотермические эффекты, а также разрушение среды. Разрушение среды описывается с использованием подхода континуальной механики разрушения путем введения дополнительной переменной, называемой параметром повреждаемости. Этот параметр характеризует степень разрушения среды, а его эволюция определяется заданным кинетическим уравнением. Вычислительный алгоритм основан на методе конечных элементов. Дискретизация уравнений по времени производится по неявной схеме для перемещений, давления и температуры и по явной для параметра повреждаемости. В качестве конечных элементов выбраны элементы Тейлора-Худа, имеющие второй порядок аппроксимации по перемещениям и первый по давлению и температуре. Система уравнений решается в рамках “монолитной” постановки без итерационного связывания между группами уравнений. Рассмотрены результаты расчетов с использованием программного модуля на примере задачи термического воздействия на нефтяной пласт.

Сохранить в закладках
МОДЕЛИРОВАНИЕ ФИЗИЧЕСКОЙ НЕУСТОЙЧИВОСТИ НА КОНТАКТНЫХ ГРАНИЦАХ В ТЕЧЕНИЯХ МНОГОКОМПОНЕНТНЫХ СЖИМАЕМЫХ ГАЗОВ ГИБРИДНЫМ МЕТОДОМ КРУПНЫХ ЧАСТИЦ (2020)
Выпуск: Т. 21 № 2 (2020)
Авторы: Садин Дмитрий Викторович

Статья посвящена развитию гибридного метода крупных частиц применительно к двумерным течениям с развитием физической неустойчивости на поверхностях раздела неоднородных газовых смесей. Высокая разрешающая способность метода продемонстрирована при решении задач взаимодействия ударной волны с цилиндрическим пузырем легкого или тяжелого газов в сравнении с экспериментом и расчетами по другим схемам повышенного порядка аппроксимации.

Сохранить в закладках
О СХЕМАХ ВТОРОГО ПОРЯДКА ТОЧНОСТИ ДЛЯ МОДЕЛИРОВАНИЯ ПЛАЗМЕННЫХ КОЛЕБАНИЙ (2020)
Выпуск: Т. 21 № 1 (2020)
Авторы: Чижонков Евгений Владимирович

Для моделирования колебаний холодной плазмы как в нерелятивистском случае, так и с учетом релятивизма предложены модификации классических разностных схем второго порядка точности: метода МакКормака и двухэтапного метода Лакса-Вендроффа. Ранее для подобных расчетов в эйлеровых переменных была известна только схема первого порядка точности. Для задачи о свободных плазменных колебаниях, инициированных коротким мощным лазерным импульсом, с целью тестирования представленных схем проведены численные эксперименты по сохранению энергии и других величин. Сделан вывод о достоверности численного анализа колебаний как на основе схемы МакКормака, так и на основе схемы Лакса-Вендроффа, однако для расчетов “долгоживущих” процессов первая схема более предпочтительна. Теоретическое исследование аппроксимации и устойчивости вместе с экспериментальным наблюдением за количественными характеристиками погрешности для наиболее чувствительных величин существенно повышает достоверность вычислений.

Сохранить в закладках