ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ И ПРОГРАММИРОВАНИЕ
Архив статей журнала
В рамках статистического подхода, основанного на кинетическом уравнении для функции плотности вероятности распределения скорости и температуры частиц, построена континуальная модель, описывающая псевдотурбулентные течения дисперсной фазы. Введение функции плотности вероятности позволяет получить статистическое описание ансамбля частиц вместо динамического описания отдельных частиц на основе уравнений движения и теплопереноса типа Ланжевена. На основе уравнений для первых и вторых моментов дисперсной фазы проводится численное моделирование нестационарного течения газовзвеси, возникающего при взаимодействии ударной волны с облаком частиц. Основные уравнения имеют гиперболический тип, записываются в консервативной форме и решаются с использованием численного метода типа Годунова повышенного порядка точности. Обсуждается влияние двумерных эффектов на формирование ударно-волновой структуры течения и пространственно-временны´е зависимости концентрации частиц и других параметров потока.
Рассматривается проблема оптимального управления системой, состоящей из краевой задачи первого рода для квазилинейного параболического уравнения с неизвестным коэффициентом, а также из уравнения изменения по времени этого коэффициента. Обоснованы две постановки вариационных задач с финальным наблюдением, в которых управлением является граничный режим на одной из границ области. Доказаны свойства непрерывности и дифференцируемости соответствующих минимизируемых функционалов. Дано явное представление для дифференциалов через решение сопряженных задач. Установлен вид этих сопряженных задач, доказана их однозначная разрешимость в классе гладких функций. Проведенное исследование связано с моделированием и управлением физико-химическими процессами с изменяющимися внутренними свойствами материалов.
Сформулирована игровая модель противоборства в виде модели “нападение и защита”, указаны способы вычисления ресурсов сторон, анализированы эффективность их стратегий и установлены условия существования оптимального решения рассматриваемых задач.
Предложена нестационарная 2D-модель транспорта донных отложений в прибрежной зоне мелководных водоемов, дополненная уравнениями Навье–Стокса, неразрывности и состояния водной среды. Дискретная модель транспорта наносов получена в результате аппроксимации соответствующей линеаризованной непрерывной модели. Поскольку задачи прогнозирования транспорта наносов требуют решения в реальном или ускоренном масштабах времени, на сетках, включающих 106–109 узлов, необходима разработка параллельных алгоритмов задач гидродинамики на системах с массовым параллелизмом. Представлены результаты работы созданного эффективного программного обеспечения для выполнения гидродинамических вычислительных экспериментов, позволяющие проводить численное моделирование деформации дна в прибрежной зоне водоема. Приведены результаты численных экспериментов.
В статье рассматриваются результаты экспериментальной оценки производительности и энерго-эффективности многоядерных процессоров MALT в задачах обработки изображений на примере фильтрации изображения с помощью оператора Собеля. Измерения осуществлялись с использованием низкоуровневого эмулятора MALTemu, прототипа процессора в ПЛИС и экспериментальной СБИС модели MALT-Cv2 Rev1. Полученные результаты сравниваются с аналогичными результатами для процессоров общего назначения (последовательная реализация) и графических процессоров с поддержкой технологии CUDA.
Предложен новый метод восстановления изображений, имеющих три неизвестные градации яркости. Для их определения используются фрагменты изображения, гистограммы которых согласуются с заданным распределением шума. Далее все пиксели распределяются по найденным уровням яркости посредством бинарной классификации. Выполнен вычислительный эксперимент, по результатам которого оказалось, что ошибка оценки исходных яркостей не превысила 3%. При относительно низком уровне шума доля неверно классифицированных пикселей от их общего числа составила менее 0.006.
Рассматривается нелинейная модификация стохастической модели галактического динамо, в рамках которой коэффициент, отвечающий за турбулентную диффузию, полагается случайным процессом с обновлением. Показано, что при малых значениях напряженности магнитного поля его статистические моменты ведут себя примерно так же, как и в линейной модели (в частности, продемонстрировано наличие эффекта перемежаемости). Получены оценки для характерных времен выхода моментов на стабилизацию, которая наступает по мере приближения поля к равновесному значению. Проведено сопоставление результатов численного эксперимента, полученных при усреднении различных объемов выборки независисмых случайных реализаций поля.
Функционалы Минковского являются важным инструментом для изучения морфологии пористых сред. Настоящая работа посвящена построению алгоритма вычисления функционалов Минковского четырехмерных цифровых изображений, возникающих, в частности, при описании динамики изменения порового пространства среды. В работе впервые программно реализован алгоритм вычисления функционалов Минковского четырехмерных цифровых изображений.
Рассматривается задача упаковки шаров двух типов в замкнутое ограниченное множество в трехмерном пространстве как с евклидовой, так и со специальной неевклидовой метрикой. Требуется максимизировать радиус шаров при известном количестве шаров каждого типа и заданном отношении между радиусами. Предложен вычислительный алгоритм, основанный на комбинации метода бильярдного моделирования и оптико-геометрического подхода, базирующегося на фундаментальных физических принципах Ферма и Гюйгенса. Приведены результаты вычислительного эксперимента.
Приведено описание программного комплекса для математического моделирования эволюции термопороупругой среды с учетом ее разрушения. Используемая математическая модель является модификацией модели Био для случая термопороупругих сред и позволяет моделировать изменение напряженно-деформированного состояния среды, фильтрацию флюида, неизотермические эффекты, а также разрушение среды. Разрушение среды описывается с использованием подхода континуальной механики разрушения путем введения дополнительной переменной, называемой параметром повреждаемости. Этот параметр характеризует степень разрушения среды, а его эволюция определяется заданным кинетическим уравнением. Вычислительный алгоритм основан на методе конечных элементов. Дискретизация уравнений по времени производится по неявной схеме для перемещений, давления и температуры и по явной для параметра повреждаемости. В качестве конечных элементов выбраны элементы Тейлора-Худа, имеющие второй порядок аппроксимации по перемещениям и первый по давлению и температуре. Система уравнений решается в рамках “монолитной” постановки без итерационного связывания между группами уравнений. Рассмотрены результаты расчетов с использованием программного модуля на примере задачи термического воздействия на нефтяной пласт.
Статья посвящена развитию гибридного метода крупных частиц применительно к двумерным течениям с развитием физической неустойчивости на поверхностях раздела неоднородных газовых смесей. Высокая разрешающая способность метода продемонстрирована при решении задач взаимодействия ударной волны с цилиндрическим пузырем легкого или тяжелого газов в сравнении с экспериментом и расчетами по другим схемам повышенного порядка аппроксимации.
Для моделирования колебаний холодной плазмы как в нерелятивистском случае, так и с учетом релятивизма предложены модификации классических разностных схем второго порядка точности: метода МакКормака и двухэтапного метода Лакса-Вендроффа. Ранее для подобных расчетов в эйлеровых переменных была известна только схема первого порядка точности. Для задачи о свободных плазменных колебаниях, инициированных коротким мощным лазерным импульсом, с целью тестирования представленных схем проведены численные эксперименты по сохранению энергии и других величин. Сделан вывод о достоверности численного анализа колебаний как на основе схемы МакКормака, так и на основе схемы Лакса-Вендроффа, однако для расчетов “долгоживущих” процессов первая схема более предпочтительна. Теоретическое исследование аппроксимации и устойчивости вместе с экспериментальным наблюдением за количественными характеристиками погрешности для наиболее чувствительных величин существенно повышает достоверность вычислений.