Приведены результаты разработки и испытаний камеры коротковолнового инфракрасного диапазона спектра 0,9–1,7 мкм на основе первого отечественного матричного фотоприемного устройства формата 320256 элементов с шагом 30 мкм. Данное ФПУ создано на базе гетероструктуры InGaAs/InP и имеет пониженную температурную зависимость чувствительности. Рассмотрены основные компоненты камеры, приведены их основные характеристики. Показаны преимущества и основные области применения камеры как в составе мультиспектральных оптико-электронных систем, так и в качестве самостоятельного прибора.
Представлены результаты исследований вольт-амперных характеристик и спектральной характеристики чувствительности фотодиодов на основе выращенных методом MOCгидридной эпитаксии гетероэпитаксиальных структур с поглощающим слоем In0,67Ga0,33As, легированным Zn, на подложках InP. Фотодиоды изготовлены по меза-технологии. Правая граница спектральной характеристики чувствительности фотодиодов по уровню 0,5 составляет 2,06 мкм при комнатной температуре. Исследованы зависимости спектров фоточувствительности фотодиодов в диапазоне температур 230–300 К.
Обосновывается необходимость расширения динамического диапазона в МФПУ коротковолнового ИК-спектра. Традиционно применяемые способы обладают низкой эффективностью, в особенности, в крупноформатных матрицах с шагом не более 15 мкм. Наибольшей эффективностью расширения динамического диапазона (до 100 дБ) обладают накопительные ячейки с индивидуально изменяемой передаточной характеристикой в зависимости от яркости фрагментов наблюдаемой сцены. В данной работе предлагается простой в топологической реализации и эффективный способ расширения динамического диапазона, основанный на автоподстройке времени накопления индивидуально в каждой ячейке интегральной схемы считывания. При этом сохраняется высокая крутизна и линейность преобразования в накопительных ячейках с умеренной освещенностью (до 50–70 % от максимального сигнала), но снижается чувствительность в ячейках, близких к насыщению. В результате формируется линейно-логарифмическая передаточная характеристика, обеспечивающая расширенный динамический диапазон. В работе приводятся примеры полученных изображений с расширенным динамическим диапазоном в коротковолновом ИК-спектре.
В данной работе рассмотрены физико-технологические особенности вакуумных методов напыления при формировании топологии элементов микросхем. Проведенные исследования показали, что профили границ пленок при напылении через отверстия в маске резистивным испарением (навеска SiO, In), магнетронным (мишень ZnS) и ионно-лучевым (мишень SiO2) зависят как от метода напыления, так и от технологических параметров масок.
Предложена оптическая схема установки измерения ФПУ на длину волны 10,6 мкм в гетеродинном режиме. Проведен анализ параметров и свойств оптических элементов, фокусирующих лазерное излучение в пятно малых размеров. Выбран тип и материал линз, антиотражающее покрытие, рассчитаны характеристики оптических элементов измерительной установки.
Исследованы спектры фотопроводимости монокристаллов (SnS)1-x(GdS)x (x = 0,001; 0,002) при температурах (80 К, 200 К, 300 К. Было установлено, что добавка Gd увеличивает фоточувствительность бинарного соединения SnS на порядок, а также расширяет спектральную область фоточувствительности в длинноволновую область. Результаты расчета основных фотоэлектрических параметров монокристаллов (SnS)1-x(GdS)x показывают, что они являются перспективным материалом для изготовления оптоэлектронных ключей и фотоприемников в области ближнего инфракрасного диапазона (0,6–1,3 мкм).
Предложен и реализован в эксперименте метод измерения профилей концентрации активных ионов в поликристаллическом Cr2+: ZnSe, с использованием пироэлектрической камеры и непрерывного волоконного тулиевого лазера в качестве источника монохроматического излучения на 1,9 мкм. В результате сравнения с методом сканирования остросфокусированным пучком Tm3+: YLF лазера было показано, что оба метода дают близкие результаты при измерении концентрационного профиля в поверочном образце Cr2+: ZnSe, однако предложенный метод обладает большей универсальностью и значительно сокращает время на проведение исследований.
Работа посвящена использованию индия для формирования низкоомных микроконтактов к контактным слоям арсенида галлия гетероэпитаксиальных QWIP-структур для изготовления матричного фотоприёмника излучения ИК-диапазона. В технологии изготовления фоточувствительных элементов металлические контакты к контактным слоям GaAs нижнего и верхнего уровней с необходимыми свойствами получают вакуумным напылением никеля и золота с последующим быстрым отжигом при температуре 450 оС в атмосфере водорода. Эта технология включает проведение ряда трудоемких последовательных операций: изготовление фотошаблонов, фотолитография, травление меза-элементов, напыление металлов на два уровня, осуществление которых на тестовых образцах небольших размеров (краевые сегменты пластин) крайне затруднено. В настоящей работе проведено исследование возможности альтернативных способов создания низкоомных контактов к контактным слоям QWIP GaAs/AlGaAs-структур.
В данной статье представлен анализ зонных диаграмм барьерных фоточувствительных структур на основе CdxHg1-xTe (КРТ) для средней и дальней области излучения инфракрасного диапазона, работающих при температурах, близких к комнатным. Целью работы было формирование методики расчёта профилей энергетических зон в подобных структурах, учитывающей особенности реальных структур, выращенных методом молекулярно-лучевой эпитаксии. Проведены расчёты зонных диаграмм реальной фоточувствительной структуры на основе КРТ, выращенной методом молекулярно-лучевой эпитаксии в ИФП СО РАН (Новосибирск).
Представлены результаты аналитического исследования ключевых экспериментов по исследованию динамики обратимого температурно-инициированного фазового перехода «металл-диэлектрик» в диоксиде ванадия, приводящего к появлению аномальных физических явлений в оптических, электрических, тепловых и других свойствах образцов. Особое внимание уделено анализу кривых температурного гистерезиса, являющихся основным источником информации о фазовом переходе и изменению температурного положения фазового перехода. Фазовый переход «металл-диэлектрик» сопровождается аномально большими и быстрыми изменениями электрических, оптических, тепловых и магнитных свойств, открывающими принципиально новые возможности использования уникальных свойств фазового перехода в специальном приборостроении.
Обсуждается вопрос о том, может ли диффузия фотогенерированных носителей заряда из «пиксельного» пятна засветки в прилежащие области фотоприемной матрицы в сочетании с погрешностями покрытия фотоэлемента матрицы пятном быть (при заданных параметрах задачи) причиной наблюдаемого различия значений пороговых характеристик матричных ФПУ, определенных в экспериментах с однородной модулированной засветкой матрицы и в экспериментах с малым пятном засветки. Предложена схема анализа результатов Монте-Карло-расчетов фотосигнала элемента матрицы, нормированного на мощность пучка и засветку фотоэлемента, как функции размера пятна засветки. Посредством такого анализа может быть оценено различие значений порогового (минимального детектируемого) потока излучения в двух указанных случаях и влияние на него погрешности покрытия фотоэлемента пятном. Сообщается, каким образом анализ может быть распространен на случай линейчатых ФПУ с режимом временной задержки и накопления.
Представлена концепция ячейки считывания матричных фотоприемных устройств для детектирования лазерного излучения в ИК диапазоне. Особенностью ячейки сч итывания является наличие детектора импульсного излучения, позволяющего восст ановить форму сигнала. Использование так ого подхода позволяет по форме и частоте сигнала определить тип объекта.