В работе проведено исследование режимов производственных операций одностороннего шлифования и полирования подложек приборных пластин сапфира и карбида кремния с целью получения высокого качества обработанной поверхности. При достижении в течение операций шлифования и полирования толщины подложки 150 мкм получено высокое качество поверхности с показателем шероховатости около 2 нм и разбросом по толщине пластины не более 2 мкм.
В данной работе предложена методика формирования бинарных пленок AlN и ZnO неполярных и полуполярных ориентаций на сапфире термохимическим и термическим методами, а также выполнена их характеризация дифракционными и микроскопическими методами. Показано, что отжиг подложек сапфира с террасно-ступенчатой наноструктурой поверхности в восстановительной газовой среде при высокой температуре 1650 °С позволяет получать сплошные неполярные монокристаллическая пленка AlN с гексагональной структурой типа вюрцита. Приведены результаты постростового отжига (1200 °С) поликристаллической пленки ZnO толщиной около 1 мкм, нанесенной на поверхность темплейта (11 2 0) AlN/-Al2O3. Анализ полюсных фигур рентгеновской дифракции демонстрирует формирование в результате постростового отжига текстурированной полуполярной пленки 1011 ZnO. Такая методика формирования неполярных и полуполярных пленок AlN и ZnO может найти широкое применение в пьезоэлетронике и оптоэлектронике.
Приведены результаты теоретического анализа и экспериментального исследования влияния условий теплосъема на температурное поле импульсного газоразрядного источника ИКизлучения. На основе математической модели выявлен радиальный профиль цезиевого разряда, ограниченного системой из двух сапфировых оболочек, рассчитан энергетический баланс излучения и конвективного теплосъема при различных коэффициентах теплоотдачи. Экспериментально изучено влияние на температурный профиль лампы расхода и скорости охлаждающего потока, а также теплопроводности газа – теплоносителя, заполняющего зазор между сапфировыми оболочками.
Методами рентгеновской дифракции и магнитно-силовой микроскопии исследовались пленки системы Bi25FeO39-BFO на R-срезах сапфира. В нанокристаллах BFO наблюдался эффект обратного магнитоэлектрического переключения при приложении напряжения величиной ±10 В вдоль поверхности пленки. Величина магнитного момента нанокристаллов BFO, определенная в модели двух малых магнитов, была порядка 10-8–10-9 emu.
В представленной работе приводятся результаты исследований люминесцентных свойств поверхности сапфира покрытой нанокластерами золота. В качестве метода возбуждения люминесценции в работе был использован поток быстрых электронов с ускоряющим напряжением 40 кВ. Показано, что в ультрафиолетовой области спектра катодолюминесценции чистого сапфира при малых ускоряющих напряжениях (40 кВ) свечение практически отсутствует. После нанесения покрытия золота свечение в ультрафиолетовой области усиливается за счет интенсивной генерации вакансий кислорода в области контакта золота с сапфиром. Показано, что F+-полоса люминесценции при возбуждении потоком быстрых электронов является в сапфире основной, а F-полоса подавлена. Продемонстрировано плазмонное усиление интенсивности люминесценции, как в ультрафиолетовой, так и красной области спектра при нанесении нанокластеров золота. При фокусировке пучка электронов обнаружен эффект усиления люминесценции в ультрафиолетовой области и температурного гашения в красной области спектра. Усиление интенсивности люминесценции F+- центров связано с генерацией новых вакансий кислорода и перезарядкой старых.
В работе для повышения предельной величины удельной мощности разряда импульсной ксеноновой лампы предлагается произвести замену кварцевого стекла, используемого в качестве материала оболочки, на сапфир. Доказывается более высокая стойкость сапфира к термическим напряжениям, воздействию ударной волны и внутреннего давления разряда. Выполнен расчет конструкции токовводов в сапфировую оболочку импульсной ксеноновой лампы.
В представленной работе изучена кинетика процессов радиационно-индуцированной перестройки поверхности сапфира с нанокристаллами золота с использованием временной зависимости спектров катодолюминесценции. Показано, что основными центрами окраски в УФ-области спектра катодолюминесценции сапфира являются F+-центры, а F-полоса подавлена. Исследование временной зависимости интенсивно-сти F+-центров подтверждает отсутствие этапа поверхностного плавления сапфи-ра в процессе облучения потоком электронов с ускоряющим напряжением 50 кэВ.
Малая величина уширения линии Cr3+ соответствует незначительным отклонениям температуры на поверхности сапфира в процессе электронного облучения. Предложена качественная модель описывающая травление поверхности сапфира с нанокристаллами золота в процессе воздействия электронов. В основе рассмотренной модели лежит радиационно-индуцированный Оже-распад сапфира и формирование в процессе протекания экзотермической реакции интерметаллических фаз Au-Al.
Проведен анализ процессов травления сапфировых подложек. Рассматриваются особенности использования методов химико-механического, лазерного, ионного, электронного травления сапфировых подложек. Определено, что при химико-механическом и лазерном травлении плоскостей сапфира происходит послойное удаление материала через промежуточные процессы внутрислоевого растрескивания, а скорость травления коррелирует с межплоскостным расстоянием. В случае применения ионного и электронного травления основным механизмом является образование пронизывающих пор, треков, которые ослабляют межатомные связи и приводят к разрушению кристаллической решетки сапфира. При этом скорость травления различных плоскостей кристалла сапфира коррелирует с потенциальной энергией межатомного взаимодействия внутри соответствующей плоскости. Наименьшая интенсивность F+-полосы катодолюминесценции, как и скорость генерации кислородных вакансий наблюдается для С-плоскости сапфира, атомы кислорода в которых формируют плотноупакованный каркас. Наибольшая интенсивность катодолюминесценции наблюдается для А-плоскости сапфира, в которой атомы обладают наименьшей потенциальной энергией.