Представлены результаты исследований процессов модификации поверхности кварцевых стекол при облучении их пучком электронов с энергией 5–15 кэВ и плотностью мощности 104 Вт/см2. Показано, что при сканировании поверхности стекла пучком электронов с энергией более 10 кэВ в приповерхностном слое формируются продольные каналы, глубина которых зависит от энергии электронного пучка и скорости его перемещения по поверхности. Снижение скорости сканирования до 10 см/с приводит к формированию серии кратеров. При энергии электронов менее 5 кэВ видимых изменений поверхности не происходит. Изменение морфологии облученного стекла приводит к повышению гидрофобности поверхности, а также к снижению коэффициента пропускания для коротковолновой области спектра.
Для разрядной системы с протяженным полым катодом, используемой в форвакуумном плазменном источнике ленточного электронного пучка, исследовано влияния геометрии катодной полости и рода плазмообразующего газа на однородность распределение концентрации плазмы в области эмиссионной границы. Показано, что наибольшее влияние на однородность распределения концентрации эмиссионной плазмы оказывает геометрические параметры разрядного промежутка электронного источника. При оптимальной геометрии разрядной системы определен диапазон токов разряда, давления и рода газа, обеспечивающие неоднородность распределения концентрации плазмы не более 20 % от среднего значения.
В статье представлены результаты исследования распределения температурного поля в кварцевых стеклах при электронно-лучевом нагреве. Показано, что, несмотря на низкий коэффициент теплопроводности кварцевого стекла, с увеличением времени электроннолучевого воздействия происходит прогрев всего образца, а градиент температур уменьшается. Предложена качественная модель, описывающая электронно-лучевой нагрев стыка двух кварцевых трубок, позволяющая оценить параметры области нагрева при сварке кварца. Показана принципиальная возможность электронно-лучевой сварки кварцевых трубок.
Предложена оригинальная методика оценки коэффициента вторичной электронной эмиссии металлических и диэлектрических мишеней в области давлений в единицы и десятки паскаль. Методика основана на измерении потенциала мишени в зависимости от тока электронного пучка и сопоставлении результатов измерений с расчетными значениями, полученными с использованием модели, основанной на уравнениях баланса заряда на мишени и баланса ионов в пучковой плазме.
В статье представлены результаты измерения потенциала изолированного коллектора, облучаемого электронным пучком в среднем вакууме, при различных значениях – коэффициента вторичной электронной эмиссии электронов (ВЭЭ). Изменение обеспечено плавным перемещением относительно электронного пучка коллектора, составленного из двух металлов (алюминия и титана) с резко различающимися значениями коэффициента ВЭЭ. Предложена модель, удовлетворительно описывающая измеренную зависимость, и методика, позволяющая по установившемуся потенциалу изолированного коллектора оценивать коэффициент ВЭЭ различных материалов, в том числе и диэлектриков.
Представлены результаты исследований, направленные на решение проблемы создания диэлектрических покрытий на поверхности проводников для придания им электроизоляционных свойств. Для создания покрытий применялось электронно-лучевое испарение керамики с помощью форвакуумного плазменного источника электронов. Измерены относительная диэлектрическая проницаемость, тангенс угла диэлектрических потерь, полное сопротивление осажденного электроизоляционного покрытия.
Представлены результаты экспериментальных исследований характеристик импульсного источника протонов на основе сильноточного отражательного разряда с полым катодом. Отражательный разряд с полым катодом – это разряд с осциллирующими электронами в магнитном поле (разряд типа Пеннинга), в разрядной системе которого один из двух катодов имеет протяженную полость с малой входной апертурой. Изучено влияние на распределение токов между катодами величины разрядного тока, давления и магнитного поля. Установлено, что в сильноточном режиме работы разряда (до 5 А) доля тока, приходящаяся на катодную полость, составляет в среднем около 60 %. Представлены вольтамперные характеристики разряда и эмиссионные характеристики источника с модифицированной конструкцией полого катода. Результаты исследований имеют важное значение для создания компактного источника протонов с высокой интенсивностью пучка.
Представлены результаты экспериментальных исследований плазменного осаждения покрытий типа перовскит (CaTiO3) с использованием двух планарных магнетронов. В экспериментах использовались чистые (99,9 %) распыляемые мишени из титана и кальция. Независимое электрическое питание каждого магнетронного разряда осуществлялось как постоянным, так и импульсным (10–20 кГц) напряжением. Осаждение покрытий происходило в смеси аргона и кислорода. Анализ полученных покрытий производился методами сканирующей электронной микроскопии и рентгено-фазового анализа.
Изучено влияние продольного магнитного поля на эмиссионные характеристики форвакуумного плазменного источника электронов на основе разряда с полым катодом. Показано, что, начиная с некоторого порогового значения индукции Bс, магнитное поле приводит к уменьшению концентрации плазмы на оси катодной полости.
С уменьшением диаметра катодной полости пороговое значение Bс увеличивается.
С другой стороны, продольное магнитное поле позволяет увеличить диаметр эмиссионного канала, что способствует существенному увеличению тока эмиссии электронов из плазмы. При этом степень увеличения тока эмиссии определяется геометрией катодной полости и давлением рабочего газа.
Предложен метод экспериментального определения соотношения ионного и атомного компонентов бора в процессе формирования покрытия магнетронным распылением и электронно-лучевым испарением. Метод основан на сравнительном анализе приращения веса подложек оригинальных конденсационных зондов с поперечным магнитным полем и без него. Установлено, что при электронно-лучевом испарении определяющий вклад в формирование покрытия вносит ионная составляющая, а при магнетронном распылении – атомная. На основании оценки каждого из этих вкладов определено отношение концентрации атомарного и ионизованного компонентов бора в плазме электронного пучка и в плазме магнетронного разряда.
Изучены особенности инжекции электронов из плазмы эмиттерного разряда в разрядную систему планарного магнетронного разряда. В качестве эмиттерного разряда использовались тлеющий разряд с полым катодом и вакуумная дуга. Инжекция электронов осуществлялась через центральное отверстие в мишени магнетрона. Давление рабочего газа (аргон) в вакуумной камере составляло 0,05–0,09 Па. Эмиттерный тлеющий разряд в полом катоде функционировал как в слаботочном непрерывном режиме (10–100 мА), так и сильноточном импульсном режиме (10–20 А, 25 мкс, 1 Гц). Вакуумный дуговой эмиттер функционировал в импульсном режиме (10–60 А, 200 мкс, 1 Гц). Измерены токи эмиссии для различных конфигураций разрядной системы, в том числе определены условия, обеспечивающие полное переключение электронного компонента тока эмиттера в разрядную систему магнетронного распылителя.
Представлены результаты эксперимента по электронно-лучевому осаждению керамических покрытий оксида циркония, стабилизированного оксидом иттрия с использованием форвакуумного плазменного источника электронов. Методом растровой электронной микроскопии получены данные о морфологии и элементном анализе поверхности покрытий. Структурно-фазовый состав образцов выявил наличие кристаллической структуры синтезированных покрытий с содержанием моноклинной и тетрагональной фаз. Методом Оливера-Фарра получены значения твердости и моду-ля упругости покрытий.