Методом спада фотопроводимости -PCD в образцах кремниевых пластин n-типа, выращенных методом Чохральского, обнаружены кольцевые неоднородности в распределении времени жизни неосновных носителей заряда, отсутствующие или слабо выраженные в кремнии р-типа. Средняя величина указанных неоднородностей возрастает при проведении термических операций при изготовлении фотодиодов. Обнаруженные кольцевые неоднородности в распределении времени жизни коррелируют с неоднородностями в распределении фото- и темнового тока фотодиодов, изготовленных на исследованных пластинах.
The microwave-detected photoconductance decay (μ-PCD) was used to monitor the ring distribution minority carrier lifetime in the n-type Czochralski (Cz) silicon substrates. This ring patterns are not observed in p-type silicon. The increase in ring-like patterns size after high temperature treatments for the photodiodes realization was observed. Strong correlation was observed between distributions carrier lifetime, photo- and dark currents in investigated wafers.
Идентификаторы и классификаторы
- SCI
- Физика
- eLIBRARY ID
- 29423998
В работе методом спада фотопроводимости -PCD в образцах кремниевых пластин n-типа, выращенных методом Чохральского, обнаружены кольцевые неоднородности в распределении времени жизни неосновных носителей заряда, отсутствующие или слабо выраженные в кремнии р-типа.
Средняя величина указанных неоднородностей возрастает при проведении термических операций при изготовлении фотодиодов.
Обнаруженные кольцевые неоднородности в распределении времени жизни коррелируют с неоднородностями в распределении фото- и темнового тока фотодиодов, изготовленных на исследованных пластинах.
Указанные неоднородности приводят к заметным разбросам в фоточувствительности в многоэлементных фотодиодах.
Возможной причиной неоднородностей являются страты роста, однако выяснение природы генерационно-рекомбинационых центров, определяющих значения р, Ip, Id, требует дальнейших исследований.
Список литературы
1. Donne A. Le, Binetti S., Folegatti V., and Coletti G. // Applied Physics Letters. 2016. Vol. 109. P. 033907.
2. ZHOU Chun-lan, WANG Wen-Jing, LI Hai-Ling, ZHAO Lei, DIAO Hong-Wei, LI-Xu-Dong // Chinese Physical Letters. 2008. Vol. 25. No. 6. P. 3005.
3. Coletti G., Manshanden P., Bernardini S., Bronsveld P. S. P., Gutjahr A., Hu Z., Li G. // Solar Energy Materials and Solar Cells. 2014. Vol. 130. P. 647.
4. Yu Hu, H. Schøn, Ǿ. Nielsen, E. J. Ǿvrelid, and Arnberg // Journal of Applied Physics. 2012. Vol. 111. P. 053101.
5. Климанов Е. А. // Прикладная физика. 2011. № 6. C. 133.
6. Меasurement System for the Semiconductor Industry WT-2000, User Manual.
7. Msaad H., Michel J., Reddy A., Kimerling L. C. // J. Electrochemical Society. 1995. Vol. 142. No. 8. P. 2833.
8. Rotondaro A. L. P., Hurd T. Q., Kaniava A., Vanhellemont J., Simoen E., Heyns M. M., Claeys C., Brown G. // J. Electrochemical Society. 1996. Vol. 143. No. 9. P. 3014.
9. Аут И., Генцов Д., Герман К. Фотоэлектрические явления. – M.: Мир, 1980.
10. Филачев А. М., Таубкин И. И., Тришенков М. А. Твердотельная фотоэлектроника. Фотодиоды. – М.: Физматлит, 2011.
1. A. Le Donne, S. Binetti, V. Folegatti, and G. Coletti, Applied Physics Letters, 109, 033907 (2016).
2. ZHOU Chun-lan, WANG Wen-Jing, LI Hai-Ling, ZHAO Lei, DIAO Hong-Wei, and LI-Xu-Dong, Chinese Physical Letters 25, 3005 (2008).
3. G. Coletti, P. Manshanden, S., Bernardini, P. S. P. Bronsveld, A. Gutjahr, Z. Hu, and G. Li, Solar Energy Materials and Solar Cells 130, 647 (2014).
4. Yu Hu, H. Schøn, Ǿ. Nielsen, E. J. Ǿvrelid, and Arnberg, Journal of Applied Physics 111, 053101 (2012).
5. E. A. Klimanov, Prikl. Fiz., No. 6, .133 (2011).
6. Меasurement System for the Semiconductor Industry WT-2000, User Manual.
7. H. Msaad, J. Michel, A. Reddy, and L. C. Kimerling, J. Electrochemical Society 142, 2833 (1995).
8. A. L. P. Rotondaro, T. Q. Hurd, A. Kaniava, J. Vanhellemont, E. Simoen, M. M. Heyns., C. Claeys, and G. Brown, J. Electrochemical Society 143, 3014 (1996).
9. I. Aut, D. Gentsov, and K. German, Photoelectric Phenomena (Mir, Moscow, 1980) [in Russian].
10. A. M. Filachev, I. I. Taubkin, and M. A. Trishenkov, Solid State Photoelectronics. Photodiodes (Fizmatlit, Moscow, 2011) [in Russian].
Выпуск
С О Д Е Р Ж А Н И Е
ОБЩАЯ ФИЗИКА
Герасимов С. А. Электродинамика движущегося магнитного диполя и униполярная индукция 205
Наумов Н. Д. Оценка поля широкополосного излучения, сфокусированного параболическим рефлектором 212
ФИЗИКА ПЛАЗМЫ И ПЛАЗМЕННЫЕ МЕТОДЫ
Гришина И. А., Иванов В. А., Коврижных Л. М. Состояние исследований в области физики плазмы и плазменных технологий в России в 2016 году (обзор материалов XLIV Международной Звенигородской конференции по физике плазмы и управляемому термоядерному синтезу) 218
Курбанисмаилов В. С., Омаров О. А., Рагимханов Г. Б., Терешонок Д. В., Абакарова Х. М. Формирование и развитие объемного разряда в аргоне в условиях предварительной ионизации газа 239
Шахатов В. А., Лебедев Ю. А., Lacoste A., Bechu S. Кинетика заселения триплетных состояний молекулы водорода в ЭЦР-разряде 249
ФОТОЭЛЕКТРОНИКА
Яковлева Н. И., Болтарь К. О., Никонов А. В., Егоров А. В. Многорядные фотоприемные устройства на основе гетероэпитаксиальных структур HgCdTe коротковолнового ИК-диапазона спектра 265
Мирофянченко А. Е., Мирофянченко Е. В. Современное состояние и перспективы использования материалов на основе сурьмы для инфракрасных фотоприемных устройств (обзор) 271
Вильдяева М. Н., Демидов С. С., Климанов Е. А., Ляликов А. В., Фокина А. С. Влияние кольцевой неоднородности распределения времени жизни носителей заряда в кремниевых пластинах на параметры фотодиодов 282
ФИЗИЧЕСКАЯ АППАРАТУРА И ЕЕ ЭЛЕМЕНТЫ
Федоров А. И., Шиянов Д. В. Повышение эффективности CuBr-лазера в режиме сдвоенных импульсов накачки 288
Охрем В. Г. Расчетная модель холодильного элемента Пельтье 299
ИНФОРМАЦИЯ
Правила для авторов 305
Подписка на электронную версию журнала 308
C O N T E N T S
GENERAL PHYSICS
S. A. Gerasimov Electrodynamics of moving magnetic dipole and unipolar induction 205
N. D. Naumov Field evaluation of broadband radiation is focused by a parabolic reflector 212
PLASMA PHYSICS AND PLASMA METHODS
I. A. Grishina, V. A. Ivanov, and L. M. Kovrizhnych Status of scientific researches in plasma physics and plasma technologies in Russia in 2016 (Review of the reports of the XLIV International Zvenigorod Conference) 218
V. S. Kurbanismailov, О. А. Omarov, G. B. Ragimhanov, D. V. Tereshonok, and Kh. M. Abakarova For-mation and development of a volume discharge in Ar at pre-ionization gas conditions 239
V. A. Shakhatov, Yu. A. Lebedev, A. Lacoste, and S. Bechu The excitation kinetics of hydrogen triplet states in ECR discharge 249
PHOTOELECTRONICS
N. I. Iakovleva, K. O. Boltar, А. V. Nikonov, and A. V. Egorov HgCdTe 2-D scanning hybrid FPAs 265
A. E. Mirofyanchenko and E. V. Mirofyanchenko Current state and prospects of using antimony-based materials for infrared photodetective devices (a review) 271
M. N. Vil’dyaeva, S. S. Demidov, E. A. Klimanov, A. V. Lyalikov, and A. S. Fokina Influence of a ring distribution carrier lifetime in the silicon on parameters photodiodes 282
PHYSICAL EQUIPMENT AND ITS ELEMENTS
A. I. Fedorov and D. V. Shiyanov Increase of effectiveness for a low-frequency CuBr-laser operating in the regime of double pumping pulses 288
V. G. Okhrem The design model of the Peltier refrigeration element 299
INFORMATION
Rules for authors 305
Subscription to an electronic version of the journal 308
Другие статьи выпуска
Предложена модель термоэлектрического холодильника, работающего на основе эффекта Пельтье, которая приводит к более глубокому охлаждению по сравнению с результатами, достигаемыми с помощью стандартных холодильных элементов. В этой модели по первому варианту ветви р- и n-типа проводимостей расположены в линию и соединены между собой медной перемычкой. Рассчитаны температуры стыков перемычки и ветвей. По второму варианту термоэлектрик р- и n-типа проводимости расположен между двумя медными блоками. Сделан расчет температур стыков. Оценено снижение температуры. В статье приведены также расчетные зависимости температуры охлаждения от плотности электрического тока для радиального холодильника, сделан анализ полученных результатов, даны практические рекомендации.
Приведены результаты исследований CuBr-лазера в режиме сдвоенных импульсов накачки, работающего с частотой повторения импульсов генерации 50 Гц. Показано, что КПДлазера можно увеличивать в несколько раз за счет оптимального ввода энергии импульса возбуждения в разряд активной среды и ее согласованием с импедансом плазмы, образуемой диссоциирующим импульсом накачки. Получен максимальный КПД лазера на уровне 2,7 % по импульсу возбуждения со средней мощностью 17 мВт, энергией 0,35 мДж, длительностью импульса излучения 70 нс и временной задержкой 150 мкс.
За последние несколько лет достигнут значительный прогресс в изготовлении матричных фотоприемных устройств инфракрасного диапазона спектра (ИК ФПУ) на основе антимонидов. Наибольшее развитие получили ИК ФПУ на InSb, однако они имеют ряд недостатков, одним из которых является эффективная работа только в средневолновом ИКдиапазоне спектра. Использование «бариодных» структур на основе эпитаксиальных слоев (ЭС) InAsSb позволяет полностью перекрыть весь средний ИК-диапазона спектра и значительно снизить уровень темновых токов в сравнении с InSb. Одними из наиболее перспективных материалов для ИК ФПУ являются напряженные сверхрешетки II типа на основе антимонидов, основными преимуществами которых являются относительно просто настраиваемый рабочий диапазон от 3 до 32 мкм, а также значительно подавленная Ожерекомбинация, что в теории может позволить изготовить устройство с параметрами, превосходящими аналогичные устройства на основе твердых растворов кадмий-ртутьтеллур. Тем не менее, на данный момент остается ряд нерешенных проблем в технологии изготовления данных устройств, поэтому их потенциал еще полностью не реализован. В данной статье представлен сравнительный анализ и текущее состояние материалов на основе сурьмы, используемых для изготовления ИК ФПУ. Показаны причины повышенных темновых токов в данных устройствах и пути их снижения, а также рассмотрены перспективы использования в мультиспектральных устройствах.
Исследованы параметры многорядных фотоприемных устройств (ФПУ) на основе гетероэпитаксиальных структур HgCdTe различного формата 288×4; 480×6; 576×4; 576×6 и др. с шагом от 28 до 14 мкм. Благодаря выбору N+/P-/р-архитектуры, ФПУ функционируют при повышенных температурах в режиме временной задержки и накопления, с реализацией аналогового режима ВЗН и замещением дефектных элементов непосредственно в БИС считывания. ФПУ обладают возможностью формирования изображения высокой четкости формата 768×576 пикселей при кадровой частоте 50 Гц в режиме реального времени. Для многорядных ФПУ получены высокие фотоэлектрические параметры: обнаружительная способность в максимуме спектральной чувствительности D* 5×1012 см Вт-1 Гц1/2 при температурах Т ~170-200 К, количество годных каналов не менее 99,0 %.
Уровневая полуэмпирическая столкновительно-излучательная модель водородной низкотемпературной плазмы электронно-циклотронного резонанса использована для анализа применимости спектральных методов диагностики по излучению триплетных состояний молекулярного водорода ( N 3 = 3 a g, 3 c u, 3 d u, 3 e u, 3 f u, 3 g g, 3 h g, 3 i g, 3 k u и 3 r g ). Показано, что вторичные процессы дают наибольший вклад в кинетику рождения и гибели триплетных состояний 3 a g, 3 c u, 3 d u, 3 e u, 3 g g, 3 h g, 3 i g и 3 r g. Наименьший вклад вторичные процессы дают в возбуждение и дезактивацию триплетных состояний 3 f u и 3 k u. Для обработки интенсивностей дипольных разрешенных переходов f 3u a3g, g3g и 3 3 k u a g может применяться упрощенная корональная модель.
Приведены результаты анализа экспериментальных и численных исследований пространственно-временной картины формирования и развития оптических картин (с применением ФЭР-2) в инертном газе (Ar) атмосферного давления в коротких промежутках (d = 1 см), с площадью разряда s = 12 см2 при напряжениях в диапазоне от статистического пробойного (Uст = 6,8 кВ при d = 1 см, р = 1 атм) до сотни процентов перенапряжений (до 20 кВ). Исследования выполнены при наличии предыонизации промежутка (n0 ~ 107 cм-3).
Дан обзор новых наиболее интересных результатов, представленных на ежегодной XLIV Международной Звенигородской конференции по физике плазмы и управляемому термоядерному синтезу, состоявшейся с 13 по 17 февраля 2017 года в городе Звенигороде Московской области. Проведен анализ развития и достижений основных направлений исследований в области физики плазмы в России и их сравнение с работами за рубежом.
Рассматривается задача оценки в параксиальной области поля излучения, фокусировка которого обусловлена небольшим сдвигом облучателя от фокуса параболического рефлектора. Получено аналитическое выражение для начального радиуса кривизны фазового фронта. Сформулирован метод оценки в параксиальной области амплитуды поля сфокусированного волнового пучка. Проанализировано влияние начального радиуса кривизны фазового фронта на фокусировку волнового пучка. Получено аналитическое выражение для временной формы сфокусированного импульса на оси рефлектора. Представлены результаты расчетов поля сфокусированного сверхширокополосного импульса в плоскости геометрического фокуса.
Движущийся с постоянной скоростью магнитный диполь в инерциальной системе отсчета ведет себя как электрический, дипольный момент которого определяется векторным произведением скорости на магнитный дипольный момент. Кроме того, движущийся магнитный диполь создает вихревое электрическое поле. Рассматривая намагниченное тело как однородное распределение магнитных диполей, можно вычислить электрическое поле, создаваемое таким вращающимся магнитом. Электрическое поле существенно отличается от поля, которое должно было бы возникнуть во вращающейся системе отсчета вследствие применения правил преобразования полей при переходе из вращающейся системы отсчета в инерциальную. Такое рассмотрение позволяет избавиться от ряда противоречий, свойственных современной интерпретации униполярной индукции.
Издательство
- Издательство
- АО "НПО "ОРИОН"
- Регион
- Россия, Москва
- Почтовый адрес
- 111538, г Москва, р-н Вешняки, ул Косинская, д 9
- Юр. адрес
- 111538, г Москва, р-н Вешняки, ул Косинская, д 9
- ФИО
- Старцев Вадим Валерьевич (ГЕНЕРАЛЬНЫЙ ДИРЕКТОР)
- E-mail адрес
- orion@orion-ir.ru
- Контактный телефон
- +7 (499) 3749400