1. Рогацкий Д.В. Лучевая диагностика в стоматологии: 2D/3D/. - М.: ТАРКОММ, 2021. - 403 с.
2. Kamoen A, Dermaut L, Verbeeck R. The clinical significance of error measurement in the interpretation of treatment results. Eur J Orthod. 2011; 14: 569-78.
3. Tng TT, Chan T, Hägg U, Cooke M. Validity of cephalometric landmarks. An experimental study. Eur J Orthod. 1994; 14: 110-20. DOI: 10.1093/ejo/16.2.110
4. Bichu YM, Hansa I, Bichu AY, Premjani P, Flores-Mir C, Vaid NR. Applications of artificial intelligence and machine learning in orthodontics: a scoping review. Prog Orthod. 2021; 22(1): 18. DOI: 10.1186/s40510-021-00361-9
5. Muraev AA, Tsai P, Kibardin I, Oborotistov N, et al. Frontal cephalometric landmarking: humans vs artificial neural networks. Int J Comput Dent. 2020; 23(2): 139-148.
6. Kök H, Izgi MS, Acilar AM. Determination of growth and development periods in orthodontics with artificial neural network. Orthod Craniofac Res. 2021; 24(S2): 76-83. DOI: 10.1111/ocr.12443
7. Yao J, Zeng W, He T, Zhou S, et al. Automatic localization of cephalometric landmarks based on convolutional neural network. Am J Orthod Dentofacial Orthop. 2022; 161(3): e250-e259. DOI: 10.1016/j.ajodo.2021.09.012
8. Londono J, Ghasemi S, Hussain SA, et al. Evaluation of deep learning and convolutional neural network algorithms accuracy for detecting and predicting anatomical landmarks on 2D lateral cephalometric images: A systematic review and meta-analysis. Saudi Dent J. 2023; 35(5): 487-497. DOI: 10.1016/j.sdentj.2023.05.014
9. Hwang HW, Park J, Moon JH, et al. Automated Identification of Cephalometric Landmarks: Part 2. Might It Be Better Than human? Angle Orthod. 2020; 90(1): 69-76. DOI: 10.2319/022019-129.1
10. Bajjad AA, Gupta S, Agarwal S, et al. Use of artificial intelligence in determination of bone age of the healthy individuals: A scoping review. J World Fed Orthod. 2024; 13(2): 95-102. DOI: 10.1016/j.ejwf.2023.10.001
11. Czako L, Sufliarsky B, Simko K, Sovis M, et al. Exploring the Practical Applications of Artificial Intelligence, Deep Learning, and Machine Learning in Maxillofacial Surgery: A Comprehensive Analysis of Published Works. Bioengineering (Basel). 2024; 11(7): 679. DOI: 10.3390/bioengineering11070679
12. Оборотистов Н.Ю., Мураев А.А., Мокренко М.Е. и др. Сравнение традиционной - ручной и автоматической систем расстановки цефалометрических точек на телерентгенограмме головы в боковой проекции в специализированных программах // Ортодонтия. - 2022. - №4(100). - С.22-29.
13. Колсанов А.В., Попов Н.В., Аюпова И.О., Ивлева А.И. Согласованность мнений экспертов при изучении позиции опорных точек для изучения мягкотканного профиля лица на цифровых телерентгенологических снимках боковой проекции черепа // Стоматология. - 2021. - №100(4). - С.49-54.
14. Subramanian AK, Chen Y, Almalki A, Sivamurthy G, Kafle D. Cephalometric Analysis in Orthodontics Using Artificial Intelligence-A Comprehensive Review. Biomed Res Int. 2022; 2022: 1880113. DOI: 10.1155/2022/1880113
15. Kunz F, Stellzig-Eisenhauer A, Zeman F, Boldt J. Artificial intelligence in orthodontics. Journal of Orofacial Orthopedics/Fortschritte der Kieferorthopädie. 2020; 81(1): 52-68. DOI: 10.1007/s00056-019-00203-8
16. Persin LS. Orthodontics. National Manual in 2 vol. T.1. Diagnosis of dentoalveolar anomalies. M.: GEOTAR-Media, 2020. Р.304. doi: 10,33029/9704-5408-4-1-ONRD-2020-1-304.
17. Meric P, Naoumova J. Web-based Fully Automated Cephalometric Analysis: Comparisons between App-aided, Computerized, and Manual Tracings. Turkish Journal of Orthodontics. 2020; 33(3): 142-149. DOI: 10.5152/turkjorthod.2020.20062
18. Schwendicke F, Chaurasia A, Arsiwala L, et al. Deep learning for cephalometric landmark detection: systematic review and meta-analysis. Clin Oral Investig. 2021; 25(7): 4299-4309. DOI: 10.1007/s00784-021-03990-w
19. Gong BW, Chang S, Zuo FF, et al. Automated cephalometric landmark identification and location based on convolutional neural network. Zhonghua Kou Qiang Yi Xue Za Zhi. 2023; 58(12): 1249-1256. DOI: 10.3760/cma.j.cn112144-20230829-00118
20. Butul B, Sharab L. Obstacles behind the innovation-a peek into Artificial intelligence in the field of orthodontics. A Literature review. The Saudi Dental Journal. 2024. DOI: 10.1016/j.sdentj.2024.03.008
21. Ahn HJ, Soo-Hwan BSH, Baek SH, et al. A Comparative Analysis of Artificial Intelligence and Manual Methods for Three-Dimensional Anatomical Landmark Identification in Dentofacial Treatment Planning. Bioengineering. 2024; 11(4): 318. DOI: 10.3390/bioengineering11040318
22. Silva TP, Pinheiro MCR, Freitas DQ, et al. Assessment of accuracy and reproducibility of cephalometric identification performed by 2 artificial intelligence-driven tracing applications and human examiners. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. 2024. 137(4): 431-440. DOI: 10.1016/j.oooo.2024.01.011
23. Durão AR, Pittayapat P, Rockenbach MI, Olszewski R, et al. Validity of 2D lateral cephalometry in orthodontics: a systematic review. Prog Orthod. 2013; 14(1): 31. DOI: 10.1186/2196-1042-14-31
24. Kotuła J, Kuc AE, Lis J, Kawala B, Sarul M. New Sagittal and Vertical Cephalometric Analysis Methods: A Systematic Review. Diagnostics. 2022; 12(7): 1723. DOI: 10.3390/diagnostics12071723
25. Kattan EE, Kattan MH, Elhiny OA. A New Horizontal Plane of the Head, ID Design Press, Skopje. Repub. Maced. Open Access Maced. J. Med. Sci. 2018; 6: 767-771. DOI: 10.3889/oamjms.2018.172
26. Kumar V, Sundareswaran S. Cephalometric Assessment of Sagittal Dysplasia: A Review of Twenty-One Methods. Journal of Indian Orthodontic Society. 2014; 48(1): 33-41. DOI: 10.5005/jp-journals-10021-1215
27. Houston WJB, Maher RE, McElroy D, Sherriff M. Sources of error in measurements from cephalometric radiographs. Eur J Orthod. 1986; 14: 149-51. DOI: 10.1093/ejo/8.3.149
28. Baumrind S, Frantz RC. The reliability of head film measurements. 1. Landmark identification. Am J Orthod. 1971; 14: 111-27. DOI: 10.1016/0002-9416(71)90028-5
29. Park JA, Lee JS, Koh KS, Song WC. The use of a zygomatic arc as a reference line for clinical applications and anthropological research. Surg. Radiol. Anat. 2019; 41: 501-505.
30. Uğurlu M. Performance of a Convolutional Neural Network-Based Artificial Intelligence Algorithm for Automatic Cephalometric Landmark Detection. Turk J Orthod. 2022; 35(2): 94-100. DOI: 10.5152/TurkJOr-thod.2022.22026
31. Lindner C, Wang CW, Huang CT, Li CH, et al. Fully Automatic System for Accurate Localisation and Analysis of Cephalometric Landmarks in Lateral Cephalograms. Sci Rep. 2016; 6: 33581. DOI: 10.1038/srep33581
32. Kim YH, Lee C, Ha EG, Choi YJ, Han SS. A fully deep learning model for the automatic identification of cephalometric landmarks. Imaging Sci Dent. 2021; 51(3): 299-306. DOI: 10.5624/isd.20210077
33. Durão AP, Morosolli A, Pittayapat P, et al. Cephalometric landmark variability among orthodontists and dentomaxillofacial radiologists: a comparative study. Imaging Sci Dent. 2015; 45: 213-220.
34. Lau PY, Cooke MS, Hägg U. Effect of training and experience on cephalometric measurement errors on surgical patients. Int J Adult Orthodon Orthognath Surg. 1997; 12: 204-213.
35. Аюпова И.О., Морина А.В., Колсанов А.В. и др. Сравнительная оценка методов цефалометрического анализа телерентгенограмм боковой проекции черепа // Институт стоматологии. - 2023. - №1(98). - С.76-78.
36. Gravely JF, Benzies PM. The clinical significance of tracing error in cephalometry. Br J Orthod. 1974; 1: 95-101.
37. Колсанов А.В., Попов Н.В., Аюпова И. О. и др. Определение релевантности телерентгенографических исследований в практике врачей-ортодонтов // Медицинская техника. - 2023. - №3(339). - С.29-32.
38. Kolsanov AV, Popov NV, Ayupova IO, et al. Determination of the Usability of Teleroentgenographic Studies in Orthodontic Practice. Biomedical Engineering. 2023; 57(3): 195-199. DOI: 10.1007/s10527-023-10296-6
39. Tanikawa C, Yamamoto T, Yagi M, Takada K. Automatic recognition of anatomic features on cephalograms of preadolescent children. Angle Orthod. 2010; 80(5): 812-20.