Актуальность. Современные алгоритмы искусственного интеллекта позволяют получать новые знания о потенциальных факторах риска и моделировать инструменты, прогнозирующие хроническое течение заболеваний почек у детей. Управление течением хронической болезни почек (ХБП) основано на использовании инструментов, помогающих врачу своевременно прогнозировать переход от острого заболевания почек к хроническому и своевременно направить ребенка к нефрологу.
Цель исследования: разработать графический инструмент, позволяющий прогнозировать хроническую болезнь почек у детей.
Материалы и методы. Исходными данными для разработки графического инструмента (номограммы) послужили собственные результаты, опубликованные ранее. Из полученных предикторов ХБП у детей (протеинурия, гематурия, полиморфный маркер С598Т гена IL4) построена прогностическая модель высокого качества (ROC-AUC>90%).
Результаты. Построенная номограмма обладает высокой прогностической ценностью – с точностью 98,9% прогнозировать ХБП у детей.
Заключение: Разработанную номограмму, можно использовать в качестве графического помощника врача для прогнозирования хронического течения заболевания у пациентов с острым заболеванием почек.
Цель. Оценить перспективность применения нейронных сетей для цефалометрического анализа при помощи анализа точности ручной иидентификации анатомических ориентиров на цифровых латеральных телерентгенограммах.
Материалы и методы. Выполнена разметка 100 обезличенных телерентгенограмм в боковой проекции одиннадцатью врачами- ортодонтами по 21 параметру, получено 23100 цифровых рентгеновских изображения с нанесенной на них опорной точкой. Проведено сравнение координат опорной точки с «базовой точкой», то есть усредненной координатой для каждой опорной точки среди всех ее локализаций.
Результаты. По критерию среднего отклонения от «базовой точки» наилучшая точность достигнута для вершин режущих краев центральных резцов верхней (is) (0,589, ДИ = 95%) и нижней челюстей (ii) (0,835, ДИ = 95%), а также для середины входа в турецкое седло (S) (0,662, ДИ = 95%).
Для группы ориентиров с наименьшей согласованностью, куда вошли такие точки как Po (4,330, ДИ = 95%), Pt (2,999, ДИ = 95%) и Ba (2,887, ДИ = 95%), для автоматизации идентификаций и повышения качества цефалометрического анализа, вероятно, будет недостаточным применение только искусственных нейронных сетей и потребуется внедрение других элементов машинного обучения.
Заключение. Учитывая результаты нашего исследования, можно сделать вывод, что предложенный метод демонстрирует высокую точность для большинства точек и может быть использован для автоматизации цефалометрического анализа с дальнейшим развитием технологий машинного обучения.