АКТУАЛЬНЫЕ ПРОБЛЕМЫ ПРЕПОДАВАНИЯ МАТЕМАТИКИ В ТЕХНИЧЕСКОМ ВУЗЕ
Архив статей журнала
В работе анализируется опыт быстрого перехода на дистанционный формат обучения. Многие проблемы, с которыми столкнулась кафедра математики СПбГТИ(ТУ), являются общими для кафедр, реализующих преподавание математических дисциплин в других вузах. Можно с уверенностью сказать, что дистанционное обучение не может рассматриваться как полноценная замена традиционных методов преподавания математических дисциплин, однако, оно предоставляет дополнительные возможности, которые могут повысить эффективность обучения.
В статье обсуждается методика использования пакета математических символьных вычислений Maple при изучении вузовского курса «Математическая логика и теория алгоритмов». Рассматриваются особенности синтаксиса подпакета with(Logic). Показана методика компьютерного нахождения конъюнктивной, дизъюнктивной и полиномиальной форм булевой функции. Отмечено, что при машинном нахождении полиномиальной нормальной формы для функции необходимо использовать, кроме команд логического подпакета, команды для работы с многочленами. На конкретном примере детально разобран алгоритм проверки функциональной полноты системы булевых функций.
Предлагается ввести в программу дисциплины «Обыкновенные дифференциальные уравнения» (ОДУ) для инженерных специальностей метод решения с помощью разложения по параметру. Простота этого метода позволяет включить его в учебные планы тех направлений и специальностей, где нет углубленного изучения математики, при этом этот метод хорошо демонстрирует возможность получения приближенных решений для уравнений, не имеющих аналитического решения. Таким образом, строится мост между изучением ОДУ, имеющих аналитическое решение, и приближенными методами решения ОДУ с помощью математических пакетов.
В статье рассматривается результаты реформирования советского и современного математического образования в технических вузах с конца 30-х годов XX века до 2020 года XXI века. Выявлены тенденции развития школьной и вузовской системы математического образования за указанный период времени.
Авторы рассматривают математическую подготовку обучающихся в вузе как один из компонентов профессионального образования, связывая ее с интеграцией фундаментальных и специальных знаний. В статье обоснована необходимость такой интеграции для применения полученных знаний в будущей профессиональной деятельности. Точка зрения авторов свидетельствует о необходимости включения профессионально-ориентированных задач в процесс обучения математике, что способствует формированию компетенций выпускника. В статье приведен пример профессионально ориентированной задачи, которая может быть предложена студентам специальности «Подвижной состав железных дорог», а также приведены основные шаги ее решения. Также основным этапам и уровням решения задачи определены и поставлены в соответствие индикаторы достижения компетенции (на примере ОПК - 1).
Представлены темы и структура единого задания по математике и начертательной геометрии, предлагаемого кафедрой «Высшая математика» ПГУПСа студентам первого курса. Такое задание повышает уровень знаний студентов по указанным дисциплинам и помогает приобретению навыков выбора оптимального способа решения различных задач. Подробно рассмотрено решение задачи о взаимном расположении двух прямых, заданных координатами четырех точек. Показано, что ранг, составленной из координат точек, определяет расположение четырех точек на следующих геометрических объектах: точка, прямая, плоскость, пространство.
Бакалавры по направлению 21.03.02 «Землеустройство и кадастры» и профилю «Кадастр недвижимости» для востребованности на рынке труда должны иметь основательные знания различных разделов математики. Поэтому учебным планом предусмотрено изучение семи дисциплин, существенно связанных с математикой. В статье раскрывается содержание этих дисциплин. Учитывая специфику работы будущего специалиста, приоритетным считается приобретение практических навыков.
В современных условиях информационного общества и быстро растущей в стране пандемии требуется принципиальное изменение организации образовательного процесса: аудиторной работы студентов, замены пассивного слушания лекций возрастанием доли самостоятельной работы студентов, введения системы дистанционного обучения. Самостоятельная работа студентов приобретает особое значение в условиях полного или частичного карантина в учреждениях образования [1], [2].
Сформулированы цели математического образования специалистов технических вузов. Показано, что курс математики в техническом вузе должен отражать непрерывно развивающиеся тенденции в прикладной математике. Обоснована необходимость включения курсов математики в учебные планы на всех этапах обучения, в том числе и в магистратуре. Сформулированы основные требования к математическим дисциплинам для магистрантов, направленным на формирование у выпускника универсальных и общепрофессиональных компетенций. Приводится структура углубленного курса математики, отвечающая указанным требованиям.
В процессе обучения математическому моделированию преподаватели предлагают способы соединения математики с реальным миром, в частности, на основе решения практико-ориентированных задач с использованием реальных данных из предметных областей, что определило актуальность. Цель - выполнить систематизацию эмерджентных моделей, представленных в зарубежных исследованиях и направленных на математизацию контекста задачи. Задачи: выполнить анализ научной литературы по преподаванию математического моделирования, выделить проблемы в усвоении материала студентами, предложить модели построения учебных решений. Одним из способов преодоления данного противоречия можно рассматривать преподавание моделирования через математизацию контекста.
В статье рассмотрена необходимость применения дивергентных задач при изучении дисциплин математического цикла в техническом вузе. Приведены некоторые типы дивергентных задач и оценено их влияние на развитие вариативного мышления обучающихся. Указаны методические приемы организации учебных занятий при решении дивергентных математических задач.
Рассматривается проблема наглядности изучаемого материала на занятиях по математическому анализу. В статье предлагается использование «динамической среды» программы GeoGebra как один из способов разрешения методических задач. Указаны схемы построения графиков функций с ползунками, которые применяются для изучения тем «Предел функции», «Дифференцирование функций одной переменной». Рассмотрены примеры изображений плоских областей, дуг и тел в пространстве, выполненных в среде GeoGebra, для вычисления площадей, длин дуг, объемов, циркуляции и потока векторного поля в соответствующих разделах математического анализа.