ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ И ПРОГРАММИРОВАНИЕ
Архив статей журнала
В работе рассматривается численная реализация метода обращения полного волнового поля на основе асимптотического решения уравнения Гельмгольца. Классическая постановка задачи заключается в поиске минимума штрафной функции, характеризующей среднеквадратичное уклонение модельных данных от зарегистрированных при проведении полевых работ. Для минимизации целевого функционала обычно применяются методы локальной оптимизации, такие как метод сопряженных градиентов. Именно вычисление градиента штрафной функции и является самой ресурсоемкой частью задачи. Асимптотический подход к решению обратной динамической задачи сейсмики заключается в замене дорогостоящей конечно-разностной процедуры расчета функции Грина краевой задачи частотно-зависимым лучевым трассированием. Функции Грина рассчитываются на основании данных о времени пробега вдоль лучей, об амплитуде и о геометрическом расхождении. Серия численных экспериментов для широкоизвестной модели Marmousi демонстрирует эффективность применения такого подхода к реконструкции макроскоростного строения сложноустроенных сред для низких временных частот. При сопоставимом качестве решения обратной задачи применительно к стандартному конечно-разностному подходу скорость расчетов асимптотического метода на порядок выше.
Представлено численное исследование влияния шероховатости границраздела в слоистой среде на эффективные упругие свойства тонкослоистой среды. Предложен алгоритм построения статистически эквивалентных моделей слоистых сред двух различных типов. Первый тип включает в себя модели с постоянными упругими параметрами, но с шероховатой границей раздела. Второй тип состоит из моделей с плоскими границами раздела, но с параметрами, задаваемыми случайными величинами. При этом распределение упругих параметров в моделях второго типа (средние значения и ковариационная матрица) однозначно определяется шероховатостью границ раздела (длина корреляции и стандартное отклонение) в моделях первого типа.
Представлен алгоритм построения персистентных диаграмм для оценки изменения топологии матрицы породы при взаимодействии с химически активным флюидом. В пространстве персистентных диаграмм вводится метрика, которая позволяет выполнять их кластеризацию для количественной оценки “схожести” изменений топологии порового пространства в процессе растворения матрицы породы. На основе такой кластеризации показано, что одним из доминирующих параметров в процессе химического взаимодействия флюида с породой в пластовых условиях являются скорость реакции и коэффициент диффузии, в то время как скорость потока оказывает существенно меньшее влияние.