ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ И ПРОГРАММИРОВАНИЕ
Архив статей журнала
В статье рассматривается явно-неявная балансно-характеристическая схема CABARETI-NH (CABARET Implicit Non-Hydrostatic), основанная на схеме КАБАРЕ, для решения гиперболизированной системы уравнений Навье-Стокса. Неявность вдоль одного пространственного направления позволяет значительно увеличить шаг по времени на вычислительных сетках с большим аспектным отношением ячеек. Для разрешения введенной неявности используется метод гиперболической прогонки. Это позволяет сохранить вычислительную эффективность алгоритма на уровне явных схем. Приводятся результаты валидации модели на лабораторном эксперименте трехмерного гравитационного течения стратифицированной жидкости.
В работе изложены алгоритмы и приведены компактные программные модули на языке С для быстрого вычисления показательной функции с помощью таблиц для процессоров архитектуры x86-64. Выполнена оценка точности и проведено сравнение быстродействия для некоторых процессоров AMD и Intel. Реализовано и протестировано обобщение табличного подхода для некоторых тригонометрических функций. В среднем предложенные функции работают в 10 раз быстрее соответствующих аналогов из стандартной математической библиотеки с прототипами в math.h.
Проведены расчеты тестовой задачи, связанной с моделированием течения в идеализированном медицинском устройстве, в программном комплексе FlowVision. Расчеты проводились для ламинарного, турбулентного и переходного режимов течения. Исследована масштабируемость задачи. На основе решения тестовой задачи сделан вывод о возможности применения программного комплекса FlowVision к решению проблем гемодинамики.
Современные суперкомпьютеры востребованы в самых разных областях науки и техники. Однако их вычислительные ресурсы зачастую используются не в полной мере. Причина нередко кроется в низкой эффективности выполнения пользовательских приложений. Решить возникшую проблему весьма непросто, что связано как с чрезвычайной сложностью строения современных суперкомпьютеров, так и с недостатком теоретических знаний и практического опыта в создании высокоэффективных параллельных приложений у пользователей вычислительных систем. Более того, пользователи зачастую и не знают, что их приложения работают неэффективно. Поэтому важно, чтобы администраторы суперкомпьютеров могли постоянно контролировать и анализировать весь поток выполняющихся приложений. Для этих целей можно использовать различные существующие системы мониторинга и анализа производительности, однако подобные решения в большинстве своем либо не предоставляют достаточный функционал в части изучения производительности, либо не переносимы. В данной работе описывается прототип разрабатываемого программного комплекса, который предоставляет широкие возможности по сбору и автоматическому анализу данных о производительности приложений и при этом является переносимым.
В данной статье рассматривается балансно-характеристический численный метод решения гиперболических систем уравнений на треугольных расчетных сетках. Описываются основные шаги алгоритма на примере решения двумерных уравнений мелкой воды. Метод верифицирован и проведено его сравнение с методами, разработанными другими авторами, на основных тестах для уравнений мелкой воды над ровным дном.
На сегодняшний день многопроходный метод PIV (Particle Image Velocimetry) широко используется в области экспериментальной механики жидкости и газа из-за его высокой надежности при решении практических задач. Однако он имеет известное ограничение, связанное с ошибками, возникающими при вычислении производных скорости, необходимых для деформации обрабатываемых PIV-изображений при повышении производительности метода. Поскольку количество ошибок увеличивается с применением схем более высокого порядка, на практике чаще всего ограничиваются первым порядком, что в свою очередь приводит к снижению пространственного разрешения. В данной работе предлагается метод, допускающий применение схем более чем второго порядка, что позволяет заметно повысить точность измерения скорости и ее производных и тем самым увеличить пространственное разрешение. Метод не требует восстановления ошибочных векторов скорости, позволяет избежать численного расчета производных скорости и легко применим на практике.
The convection-diffusion equation with dominant convection is considered on a uniform grid of central difference scheme. The multigrid method is used for solving the strongly nonsymmetric systems of linear algebraic equations with positive definite coefficient matrices. Two-step skew-Hermitian iterative methods are utilized for the first time as a smoothing procedure. It is demonstrated that using the proper smoothers enables to improve the convergence of the multigrid method. The robustness of the smoothers with respect to variation of the Peclet number is shown by local Fourier analysis and numerical experiments.
This paper is concerned with implementation of wave tomography algorithms on modern SIMD CPU and GPU computing platforms. The field of wave tomography, which is currently under development, requires powerful computing resources. Main applications of wave tomography are medical imaging, nondestructive testing, seismic studies. Practical applications depend on computing hardware. Tomographic image reconstruction via wave tomography technique involves solving coefficient inverse problems for the wave equation. Such problems can be solved using iterative gradient-based methods, which rely on repeated numerical simulation of wave propagation process. In this study, finite-difference time-domain (FDTD) method is employed for wave simulation. This paper discusses software implementation of the algorithms and compares the performance of various computing devices: multi-core Intel and ARM-based CPUs, NVidia graphics processors.
Схема КАБАРЕ, являющаяся представителем семейства балансно-характеристических методов, широко используется при решении многих задач для систем дифференциальных уравнений гиперболического типа в эйлеровых переменных. Возрастающая актуальность задач взаимодействия деформируемых тел с потоками жидкости и газа требует адаптации этого метода на лагранжевы и смешанные эйлерово-лагранжевы переменные. Ранее схема КАБАРЕ была построена для одномерных уравнений газовой динамики в массовых лагранжевых переменных, а также для трехмерных уравнений динамической упругости. В первом случае построенную схему не удалось обобщить на многомерные задачи, а во втором - использовался необратимый по времени алгоритм передвижения сетки. В данной работе представлено обобщение метода КАБАРЕ на двумерные уравнения газовой динамики и динамической упругости в смешанных эйлерово-лагранжевых и лагранжевых переменных. Построенный метод является явным, легко масштабируемым и обладает свойством временной обратимости. Метод тестируется на различных одномерных и двумерных задачах для обеих систем уравнений (соударение упругих тел, поперечные колебания упругой балки, движение свободной границы идеального газа).
Выделенные свойства циклов DFS-базиса блока карты простого графа позволили составить математическую модель вычисления циклов ячеек карты графа. По данной модели предложен практический алгоритм вычисления циклов ячеек карты графа. Алгоритм имеет квадратическую сложность относительно числа вершин в графе.
В работе демонстрируется, как метод апостериорной оценки порядка точности разностной схемы по Ричардсону позволяет сделать вывод о некорректности постановки (в смысле отсутствия решения) решаемой численно начально-краевой задачи для уравнения в частных производных. Это актуально в ситуации, когда аналитическое доказательство некорректности постановки ещё не получено или принципиально невозможно.
Предложен балансно-характеристический метод решения систем линейных дифференциальных уравнений в частных производных гиперболического типа, обладающий четвертым порядком аппроксимации на равномерных сетках и вторым порядком и улучшенными дисперсионными свойствами на неравномерных сетках. Метод основан на известной схеме КАБАРЕ, балансные фазы которой модифицированы путем добавления антидисперсионных членов особого вида. Ранее метод, обладающий схожими свойствами, предлагался только для простейшего одномерного линейного уравнения переноса. Приведенная модификация схемы позволяет улучшить дисперсионные свойства переноса сразу всех инвариантов Римана рассматриваемой системы уравнений. Схема бездиссипативна при отключенных процедурах монотонизации и устойчива при числах Куранта CFL ≤ 1. Точность метода и его порядок сходимости продемонстрированы на серии расчетов задачи о переносе волны, промодулированной гауссианом, на последовательности сгущающихся сеток. Предложенный метод планируется использовать в качестве основы для построения схемы КАБАРЕ с улучшенными дисперсионными свойствами для систем нелинейных дифференциальных уравнений.
- 1
- 2