- G. Birkhoff, E. C. Gartland Jr., and R. E. Lynch, “Difference Methods for Solving Convection-Diffusion Equations”, Comput. Math. Appl. 19 (11), 147-160 (1990). DOI: 10.1016/0898-1221(90)90158-G EDN: YKNXMY
- P. N. Vabishchevich and A. A. Samarskii, “Finite Difference Schemes for Convection-Diffusion Problems on Irregular Meshes”, Comput. Math. Math. Phys. 40 (5), 692-704 (2000). EDN: LGHULJ
- J. Zhang, “Preconditioned Iterative Methods and Finite Difference Schemes for Convection-Diffusion”, Appl. Math. Comput. 109 (1), 11-30 (2000). DOI: 10.1016/S0096-3003(99)00013-2 EDN: AEJFEH
- T. Ma, L. Zhang, F. Cao, and Y. Ge, “A Special Multigrid Strategy on Non-Uniform Grids for Solving 3D Convection-Diffusion Problems with Boundary/Interior Layers”, Symmetry, 13 (7), (2021). DOI: 10.3390/sym13071123
- V. V. Voevodin and Yu. A. Kuznetsov, Matrices and Computations (Nauka, Moscow, 1984) [in Russian].
- L. A. Krukier, “Implicit Difference Schemes and an Iteration Method for Their Solution for a Class of Systems of Quasilinear Equations”, Sov. Math. 23 (7), 43-51 (1979).
- L. A. Krukier, “Convergence Acceleration of Triangular Iterative Methods Based on the Skew-Symmetric Part of the Matrix”, Appl. Numer. Math., 30 (2-3), 281-290 (1999). DOI: 10.1016/S0168-9274(98)00116-0 EDN: LFIVDV
- Z.-Z. Bai, L. A. Krukier, and T. S. Martynova, “Two-Step Iterative Methods for Solving the Stationary Convection-Diffusion Equation with a Small Parameter at the Highest Derivative on a Uniform Grid”, Comput. Math. Math. Phys. 46 (2), 282-293 (2006). DOI: 10.1134/S0965542506020102 EDN: LJUTBT
- L. A. Krukier, T. S. Martynova, and Z.-Z. Bai, “Product-Type Skew-Hermitian Triangular Splitting Iteration Methods for Strongly Non-Hermitian Positive Definite Linear Systems”, J. Comput. Appl. Math. 232 (1), 3-16, (2009). DOI: 10.1016/j.cam.2008.10.033 EDN: LLPYLH
-
G. Muratova and E. Andreeva, "Multigrid Method for Fluid Dynamics Problems", J. Comput. Math. 32 (3), 233-247 (2014). DOI: 10.4208/JCM.1403-CR11 EDN: UGPUXF
-
R. P. Fedorenko, "A Relaxation Method for Solving Elliptic Difference Equations", USSR Comput. Math. Math. Phys. 1 (4), 1092-1096 (1962). DOI: 10.1016/0041-5553(62)90031-9 EDN: AIVTGH
-
A. Brandt, "Multi-Level Adaptive Solutions to Boundary-Value Problems", Math. Comput. 31, 333-390 (1977). DOI: 10.1090/S0025-5718-1977-0431719-X
-
U. Trottenberg, C. W. Oosterlee, and A. Schüller, Multigrid (Academic Press, London, 2001).
-
P. Wesseling and C. W. Oosterlee, "Geometric Multigrid with Applications to Computational Fluid Dynamics", J. Comput. Appl. Math. 128 (1-2), 311-334 (2001). DOI: 10.1016/S0377-0427(00)00517-3 EDN: YJGRMY
-
V. T. Zhukov, N. D. Novikova, and O. B. Feodoritova, "Multigrid Method for Elliptic Equations with Anisotropic Discontinuous Coefficients", Comput. Math. Math. Phys. 55 (7), 1150-1163 (2015). DOI: 10.1134/S0965542515070131 EDN: UFBOWH
-
Y. Pan and P.-O. Persson, "Agglomeration-Based Geometric Multigrid Solvers for Compact Discontinuous Galerkin Discretizations on Unstructured Meshes", J. Comput. Phys. 449 (2021). DOI: 10.1016/j.jcp.2021.110775 EDN: LIUWJN
-
S. Dargaville, A. G. Buchan, R. P. Smedley-Stevenson, et al., "A Comparison of Element Agglomeration Algorithms for Unstructured Geometric Multigrid", J. Comput. Appl. Math. 390 (2021). DOI: 10.1016/j.cam.2020.113379
-
W. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial (SIAM Press, Philadelphia, 2000).
-
K. Stüben, "Algebraic Multigrid (AMG): Experiences and Comparisons", Appl. Math. Comput. 13 (3-4), 419-451 (1983). DOI: 10.1016/0096-3003(83)90023-1
-
R. D. Falgout, "An Introduction to Algebraic Multigrid", Comput. Sci. Eng. 8 (6), 24-33 (2006). DOI: 10.1109/MCSE.2006.105
-
S. I. Martynenko, "Numerical Methods for Black Box Software", Vychisl. Metody Program. 20, 147-169 (2019). DOI: 10.26089/NumMet.v20r215 EDN: IJJQNL
-
U. M. Yang, "Parallel Algebraic Multigrid Methods - High Performance Preconditioners", in Lecture Notes in Computational Science and Engineering (Springer, Heidelberg, 2006), Vol. 51, pp. 209-236. DOI: 10.1007/3-540-31619-1_6
-
H. Sterck, U. M. Yang, and J. J. Heys, "Reducing Complexity in Parallel Algebraic Multigrid Preconditioners", SIAM J. Matrix Anal. Appl. 27 (4), 1019-1039 (2006). DOI: 10.1137/040615729
-
G. Muratova, T. Martynova, E. Andreeva, et al., "Numerical Solution of the Navier-Stokes Equations Using Multigrid Methods with HSS-Based and STS-Based Smoothers", Symmetry 12 (2020). DOI: 10.3390/sym12020233 EDN: KCUDAZ
-
Sh. Li and Zh. Huang, "Convergence Analysis of HSS-Multigrid Methods for Second-Order Nonselfadjoint Elliptic Problems", BIT Numer. Math. 53 (4), 987-1012 (2013). DOI: 10.1007/S10543-013-0433-5
-
S. Hamilton, M. Benzi, and E. Haber, "New Multigrid Smoothers for the Oseen Problems", Numer. Linear Algebra Appl. 17 (2-3), 557-576 (2010). DOI: 10.1002/nla.707 EDN: NAHZSV
-
Y. He and S. P. MacLachlan, "Local Fourier Analysis of Block-Structured Multigrid Relaxation Schemes for the Stokes Equations", Numer. Linear Algebra Appl. 25 (3), 1-28, (2018). DOI: 10.1002/nla.2147 EDN: VERGWO
-
M. S. Darwish, T. Saad, and Z. Hamdan, "A High Scalability Parallel Algebraic Multigrid Solver", in Proc. European Conf. on Computational Fluid Dynamics (ECCOMAS CFD 2006), Egmond aan Zee, Netherlands, September 5-8, 2006. DOI: 10.1007/978-3-540-92779-2_34
-
L. Wang and Z.-Z. Bai, "Skew-Hermitian Triangular Splitting Iteration Methods for Non-Hermitian Positive Definite Linear Systems of Strong Skew-Hermitian Parts", BIT Numer. Math. 44, 363-386 (2004). DOI 10.1023/B: BITN.0000039428.54019.15. EDN: MCTULF
-
Y. Saad, Iterative Methods for Sparse Linear Systems (SIAM Press, Philadelphia, 2003).
-
M. A. Botchev and L. A. Krukier, "Iteration Solution of Strongly Nonsymmetric Systems of Linear Algebraic Equations", Comput. Math. Math. Phys. 37 (11), 1241-1251 (1997).
-
L. A. Krukier, "Iterative Solution of Nonsymmetric Linear Equation Systems with Dominant Skew-Symmetric Part", in Proc. Int. Summer School on Iterative Methods and Matrix Computation, Rostov-on-Don, Russia, June 2-9, 2002 (Rostov State Univ., Rostov-on-Don, 2002), pp. 205-259.
-
J. H. Bramble, J. E. Pasciak, and J. C. Xu, "The Analysis of Multigrid Algorithms for Nonsymmetric and Indefinite Elliptic Problems", Math. Comput. 51, 389-414 (1988). DOI: 10.1090/S0025-5718-1988-0930228-6
-
Z.-H. Cao, "Convergence of Multigrid Methods for Nonsymmetric, Indefinite Problems", Appl. Math. Comput. 28 (4), 269-288 (1988). DOI: 10.1016/0096-3003(88)90076-8
-
J. Mandel, "Multigrid Convergence for Nonsymmetric, Indefinite Variational Problems and One Smoothing Step", Appl. Math. Comput. 19 (1-4), 201-216 (1986). DOI: 10.1016/0096-3003(86)90104-9