- High Performance Computing Market Size to Surpass USD 64.65 Bn by 2030. https://www.globenewswire.com/news-release/2022/04/04/2415844/0/en/High-Performance-Computing-Market-Size-to-Surpass-USD-64-65-Bn-by-2030.html Cited January 3, 2023.
- Yu. Belkina and D. Nikitenko, “Computing Cost and Accounting Challenges for Octoshell Management System”, in Proc. 4th Ural Workshop on Parallel, Distributed, and Cloud Computing for Young Scientists, Yekaterinburg, Russia, November 15, 2018. CEUR Workshop Proc. 2281, 146-158 (2018). http://ceur-ws.org/Vol-2281/paper-15.pdf.
- D. A. Nikitenko, P. A. Shvets, and V. V. Voevodin, “Why Do Users Need to Take Care of Their HPC Applications Efficiency?”, Lobachevskii J. Math. 41 (8), 1521-1532 (2020). DOI: 10.1134/s1995080220080132 EDN: ZJQJEI
- K. S. Stefanov, S. Pawar, A. Ranjan, et al., “A Review of Supercomputer Performance Monitoring Systems”, Supercomput. Front. Innov. 8 (3), 62-81 (2021). DOI: 10.14529/jsfi210304 EDN: FZIAVM
- Performance Co-Pilot. http://pcp.io/ Cited January 4, 2023.
- T. Röhl, J. Eitzinger, G. Hager, and G. Wellein, “LIKWID Monitoring Stack: A Flexible Framework Enabling Job Specific Performance Monitoring for the Masses”, in Proc. 2017 IEEE Int. Conf. on Cluster Computing (CLUSTER), Honolulu, USA, September 5-8, 2017 (IEEE Press, New York, 2017), pp. 781-784. DOI: 10.1109/CLUSTER.2017.115
- M. L. Massie, B. N. Chun, and D. E. Culler, “The Ganglia Distributed Monitoring System: Design, Implementation, and Experience”, Parallel Comput. 30 (7), 817-840 (2004). DOI: 10.1016/j.parco.2004.04.001
- J. M. Brandt, B. J. Debusschere, A. C. Gentile, et al., “Ovis-2: A Robust Distributed Architecture for Scalable RAS”, in Proc. IEEE Int. Symp. on Parallel and Distributed Processing, Miami, USA, April 14-18, 2008 (IEEE Press, New York, 2008),. DOI: 10.1109/IPDPS.2008.4536549
- M. D. Jones, J. P. White, M. Innus, et al., Workload Analysis of Blue Waters, arXiv preprint: 1703.00924v1 [cs.DC] (Cornell Univ. Library, Ithaca, 2017). https://arxiv.org/abs/1703.00924 Cited January 4, 2023.
-
N. A. Simakov, J. P. White, R. L. DeLeon, et al., A Workload Analysis of NSF's Innovative HPC Resources Using XDMoD, arXiv preprint: 1801.04306v1 [cs.DC] (Cornell Univ. Library, Ithaca, 2018). https://arxiv.org/abs/1801.04306 Cited January 4, 2023.
-
D. L. Hart, "Measuring TeraGrid: Workload Characterization for a High-Performance Computing Federation", Int. J. High Perform. Comput. Appl. 25 (4), 451-465 (2011). DOI: 10.1177/1094342010394382
-
S. M. Gallo, J. P. White, R. L. DeLeon, et al., "Analysis of XDMoD/SUPReMM Data Using Machine Learning Techniques", in 2015 IEEE Int. Conf. on Cluster Computing, Chicago, USA, September 8-11, 2015 (IEEE Press, New York, 2015), pp. 642-649. DOI: 10.1109/CLUSTER.2015.114
-
J. T. Palmer, S. M. Gallo, T. R. Furlani, et al., "Open XDMoD: A Tool for the Comprehensive Management of High-Performance Computing Resources", Comput. Sci. Eng. 17 (4), 52-62 (2015). DOI: 10.1109/MCSE.2015.68
-
T. Evans, W. L. Barth, J. C. Browne, et al., "Comprehensive Resource Use Monitoring for HPC Systems with TACC Stats", in Proc. First Int. Workshop on HPC User Support Tools, New Orleans, USA, November 21-21, 2014 (IEEE Press, New York, 2014), pp. 13-21. DOI: 10.1109/HUST.2014.7
-
P. Kostenetskiy, A. Shamsutdinov, R. Chulkevich, et al., "HPC TaskMaster - Task Efficiency Monitoring System for the Supercomputer Center", in Communications in Computer and Information Science (Springer, Cham, 2022), Vol. 1618, pp. 17-29. DOI: 10.1007/978-3-031-1623-0_ 2
-
K. Stefanov, Vl. Voevodin, S. Zhumatiy, and Vad. Voevodin, "Dynamically Reconfigurable Distributed Modular Monitoring System for Supercomputers (DiMMon)", Procedia Comput. Sci. 66, 625-634 (2015). DOI: 10.1016/j.procs.2015.11.071 EDN: WSTKBJ
-
P. Shvets, V. Voevodin, and S. Zhumatiy, "HPC Software for Massive Analysis of the Parallel Efficiency of Applications", in Communications in Computer and Information Science (Springer, Cham, 2019), Vol. 1063, pp. 3-18. EDN: ESVLFK
-
P. Shvets, V. Voevodin, and S. Zhumatiy, "Primary Automatic Analysis of the Entire Flow of Supercomputer Applications", in Proc. 4th Ural Workshop on Parallel, Distributed, and Cloud Computing for Young Scientists, Yekaterinburg, Russia, November 15, 2018. CEUR Workshop Proc. 2281, 20-32 (2018). http://ceur-ws.org/Vol-2281/paper-03.pdf.
-
D. Nikitenko, A. Antonov, P. Shvets, et al., "JobDigest - Detailed System Monitoring-Based Supercomputer Application Behavior Analysis", in Communications in Computer and Information Science (Springer, Cham, 2017), Vol. 793, pp. 516-529. DOI: 10.1007/978-3-319-71255-0_42 EDN: XNXOCU