- N. Salaun, H. Toubiana, J.-B. Mitschler, et al., “High-Resolution 3D Seismic Imaging and Refined Velocity Model Building Improve the Image of a Deep Geothermal Reservoir in the Upper Rhine Graben”, Lead. Edge 39 (12), 857-863 (2020). DOI: 10.1190/tle39120857.1
- N. C. M. Marty, V. Hamm, C. Castillo, et al., “Modelling Water-Rock Interactions Due to Long-Term Cooled-Brine Reinjection in the Dogger Carbonate Aquifer (Paris Basin) Based on in-situ Geothermal Well Data”, Geothermics 88, Article Number 101899 (2020). DOI: 10.1016/j.geothermics.2020.101899
- H. P. Menke, C. A. Reynolds, M. G. Andrew, et al, “4D Multi-Scale Imaging of Reactive Flow in Carbonates: Assessing the Impact of Heterogeneity on Dissolution Regimes Using Streamlines at Multiple Length Scales”, Chem. Geol. 481, 27-37 (2018). DOI: 10.1016/j.chemgeo.2018.01.016
- F. Huang, P. Bergmann, C. Juhlin, et al., “The First Post-Injection Seismic Monitor Survey at the Ketzin Pilot CO_2 Storage Site: Results from Time-Lapse Analysis”, Geophys. Prospect. 66 (1), 62-84 (2018). DOI: 10.1111/1365-2478.12497
- E. Kaya and S. J. Zarrouk, “Reinjection of Greenhouse Gases into Geothermal Reservoirs”, Int. J. Greenh. Gas Control 67, 111-129 (2017). DOI: 10.1016/j.ijggc.2017.10.015
- M. Prasad, S. Glubokovskikh, T. Daley, et al., “CO_2 Messes with Rock Physics”, Lead. Edge 40 (6), 424-432 (2021). DOI: 10.1190/tle40060424.1 EDN: BBNECD
- B. Quintal, E. Caspari, K. Holliger, and H. Steeb, “Numerically Quantifying Energy Loss Caused by Squirt Flow”, Geophys. Prospect. 67 (8), 2196-2212 (2019). DOI: 10.1111/1365-2478.12832
- Y. Alkhimenkov, E. Caspari, S. Lissa, and B. Quintal, “Azimuth-, Angle- and Frequency-Dependent Seismic Velocities of Cracked Rocks Due to Squirt Flow”, Solid Earth 11 (3), 855-871 (2020). DOI: 10.5194/se-11-855-2020 EDN: EVNCRE
- S. G. Solazzi, S. Lissa, J. G. Rubino, and K. Holliger, “Squirt Flow in Partially Saturated Cracks: A Simple Analytical Model”, Geophys. J. Int. 227 (1), 680-692 (2021). DOI: 10.1093/gji/ggab249 EDN: TIPRYJ
-
J. G. Rubino, T. M. Müller, L. Guarracino, et al., "Seismoacoustic Signatures of Fracture Connectivity", J. Geophys. Res. Solid Earth 119 (3), 2252-2271 (2014). DOI: 10.1002/2013JB010567 EDN: VGWPRD
-
L. Kong, B. Gurevich, Y. Zhang, and Y. Wang, "Effect of Fracture Fill on Frequency-Dependent Anisotropy of Fractured Porous Rocks", Geophys. Prospect. 65 (6), 1649-1661 (2017). DOI: 10.1111/1365-2478.12505 EDN: KTHPET
-
E. Caspari, M. Novikov, V. Lisitsa, et al., "Attenuation Mechanisms in Fractured Fluid-Saturated Porous Rocks: A Numerical Modelling Study", Geophys. Prospect. 67 (4), 935-955 (2019). DOI: 10.1111/1365-2478.12667 EDN: VSKGYW
-
J. Guo and B. Gurevich, "Effects of Coupling between Wave-Induced Fluid Flow and Elastic Scattering on P-Wave Dispersion and Attenuation in Rocks with Aligned Fractures", J. Geophys. Res. Solid Earth 125 (3), Article Number e2019JB018685 (2020). DOI: 10.1029/2019JB018685
-
S. G. Solazzi, J. Hunziker, E. Caspari, et al., "Seismic Signatures of Fractured Porous Rocks: The Partially Saturated Case", J. Geophys. Res. Solid Earth 125 (8), Article Number e2020JB019960 (2020). DOI: 10.1029/2020JB019960
-
J. Guo, L. Zhao, X. Chen, et al., "Theoretical Modelling of Seismic Dispersion, Attenuation, and Frequency-Dependent Anisotropy in a Fluid Saturated Porous Rock with Intersecting Fractures", Geophys. J. Int. 230 (1), 580-606 (2022). DOI: 10.1093/gji/ggac070 EDN: ENHMFM
-
T. M. Müller, B. Gurevich, and M. Lebedev, "Seismic Wave Attenuation and Dispersion Resulting from Wave-Induced Flow in Porous Rocks - A Review", Geophysics 75 (5), 75A147-75A164 (2020). DOI: 10.1190/1.3463417
-
J. Guo, J. G. Rubino, S. Glubokovskikh, and B. Gurevich, "Effects of Fracture Intersections on Seismic Dispersion: Theoretical Predictions Versus Numerical Simulations", Geophys. Prospect. 65 (5), 1264-1276 (2017). DOI: 10.1111/1365-2478.12474
-
J. Hunziker, M. Favino, E. Caspari, et al., "Seismic Attenuation and Stiffness Modulus Dispersion in Porous Rocks Containing Stochastic Fracture Networks", J. Geophys. Res. Solid Earth 123 (1), 125-143 (2018). DOI: 10.1002/2017JB014566 EDN: YERWTR
-
M. A. Novikov, Ya. V. Bazaikin, V. V. Lisitsa, and A. A. Kozyaev, "Numerical Modeling of Wave Propagation in Fractured Porous Fluid-Saturated Media", Numerical Methods and Programming (Vychislitel'nye Metody i Programmirovanie). 19 (3), 235-252 (2018). DOI: 10.26089/NumMet.v19r323 EDN: VPFBYS
-
J. M. Carcione and F. Cavallini, "A Rheological Model for Anelastic Anisotropic Media with Applications to Seismic Wave Propagation", Geophys. J. Int. 119 (1), 338-348 (1994). DOI: 10.1111/j.1365-246X.1994.tb00931.x
-
S. Ovaysi, M. F. Wheeler, and M. Balhoff, "Quantifying the Representative Size in Porous Media", Transp. Porous Med. 104 (2), 349-362 (2014). DOI: 10.1007/s11242-014-0338-z
-
Y. Bazaikin, B. Gurevich, S. Iglauer, et al., "Effect of CT Image Size and Resolution on the Accuracy of Rock Property Estimates", J. Geophys. Res. Solid Earth 122 (5), 3635-3647 (2017). DOI: 10.1002/2016JB013575 EDN: XNGXBC
-
M. A. Biot, "Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range", J. Acoust. Soc. Am. 28 (2), 168-178 (1956). DOI: 10.1121/1.1908239
-
M. A. Biot, "Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range", J. Acoust. Soc. Am. 28 (2), 179-191 (1956). DOI: 10.1121/1.1908241
-
G. E. Backus, "Long-Wave Elastic Anisotropy Produced by Horizontal Layering", J. Geophys. Res. 67 (11), 4427-4440 (1962). DOI: 10.1029/JZ067i011p04427
-
M. Schoenberg and F. Muir, "A Calculus for Finely Layered Anisotropic Media", Geophysics 54 (5), 581-589 (1989). DOI: 10.1190/1.1442685
-
T. Khachkova, V. Lisitsa, D. Kolyukhin, and G. Reshetova, "Influence of Interfaces Roughness on Elastic Properties of Layered Media", Probabilistic Eng. Mech. 66, Article Number 103170 (2021). DOI: 10.1016/j.probengmech.2021.103170
-
W. Zhang, G. Dai, F. Wang, et al., "Using Strain Energy-Based Prediction of Effective Elastic Properties in Topology Optimization of Material Microstructures", Acta Mech. Sin. 23 (1), 77-89 (2007). DOI: 10.1007/s10409-006-0045-2 EDN: JPCRSS
-
H. Andrä, N. Combaret, J. Dvorkin, et al., "Digital Rock Physics Benchmarks - Part II: Computing Effective Properties", Comput. Geosci. 50, 33-43 (2013). DOI: 10.1016/j.cageo.2012.09.008
-
J. G. Rubino, L. Guarracino, T. M. Müller, and K. Holliger, "Do Seismic Waves Sense Fracture Connectivity?", Geophys. Res. Lett. 40 (4), 692-696 (2013). DOI: 10.1002/grl.50127 EDN: RQTSQD
-
V. Vavryčuk, "Velocity, Attenuation, and Quality Factor in Anisotropic Viscoelastic Media: A Perturbation Approach", Geophysics 73 (5), D63-D73 (2008). DOI: 10.1190/1.2921778
-
J. Virieux, "P-SV Wave Propagation in Heterogeneous Media: Velocity-Stress Finite-Difference Method", Geophysics 51 (4), 889-901 (1986). DOI: 10.1190/1.1442147
-
A. R. Levander, "Fourth-Order Finite-Difference P-SV Seismograms", Geophysics. 53 (11), 1425-1436 (1988). DOI: 10.1190/1.1442422
-
V. Lisitsa and D. Vishnevskiy, "Lebedev Scheme for the Numerical Simulation of Wave Propagation in 3D Anisotropic Elasticity", Geophys. Prospect. 58 (4), 619-635 (2010). DOI: 10.1111/j.1365-2478.2009.00862.x EDN: MXECXF
-
A. A. Samarskii, The Theory of Difference Schemes (Nauka, Moscow, 1989; CRC Press, Boca Raton, 2001). doi. DOI: 10.1201/9780203908518
-
V. Lisitsa, O. Podgornova, and V. Tcheverda, "On the Interface Error Analysis for Finite Difference Wave Simulation", Comput. Geosci. 14 (4), 769-778 (2010). DOI: 10.1007/s10596-010-9187-1 EDN: MXLSLT
-
D. Vishnevsky, V. Lisitsa, V. Tcheverda, and G. Reshetova, "Numerical Study of the Interface Errors of Finite-Difference Simulations of Seismic Waves", Geophysics 79 (4), T219-T232 (2014). DOI: 10.1190/geo2013-0299.1 EDN: VEYPYB
-
P. Moczo, J. Kristek, and M. Gális, The Finite-Difference Modelling of Earthquake Motions: Waves and Ruptures (Cambridge University Press, Cambridge, 2014). doi. DOI: 10.1017/CBO9781139236911
-
P. Moczo, J. Kristek, V. Vavryčuk, et al., "3D Heterogeneous Staggered-Grid Finite-Difference Modeling of Seismic Motion with Volume Harmonic and Arithmetic Averaging of Elastic Moduli and Densities", Bull. Seismol. Soc. Am. 92 (8), 3042-3066 (2002). DOI: 10.1785/0120010167
-
R. Mittal and G. Iaccarino, "Immersed Boundary Methods", Annu. Rev. Fluid Mech. 37 (1), 239-261 (2005). DOI: 10.1146/annurev.fluid.37.061903.175743
-
V. Lisitsa, Y. Bazaikin, and T. Khachkova, "Computational Topology-Based Characterization of Pore Space Changes Due to Chemical Dissolution of Rocks", Appl. Math. Model. 88, 21-37 (2020). DOI: 10.1016/j.apm.2020.06.037 EDN: QJCQFL
-
Y. Saad, Iterative Methods for Sparse Linear Systems (SIAM, Philadelphia, 2003; Mosk. Gos. Univ., Moscow, 2013). doi. DOI: 10.1137/1.9780898718003
-
J. G. Rubino, E. Caspari, T. M. Müller, et al., "Numerical Upscaling in 2-D Heterogeneous Poroelastic Rocks: Anisotropic Attenuation and Dispersion of Seismic Waves", J. Geophys. Res. Solid Earth 121 (9), 6698-6721 (2016). DOI: 10.1002/2016JB013165
-
D. E. White, N. G. Mikhailova, and F. M. Lyakhovitskii, "Propagation of Seismic Waves in Layered Media Saturated with Fluid and Gas", Izv. Akad. Nauk SSSR, Ser. Fiz. Zemli, No. 10, 44-52 (1975).
-
M. A. Novikov, V. V. Lisitsa, and Y. V. Bazaikin, "Wave Propagation in Fractured-Porous Media with Different Percolation Length of Fracture Systems", Lobachevskii J. Math. 41 (8), 1533-1544 (2020). DOI: 10.1134/S1995080220080144 EDN: VWHVMY
-
Y. Al-Khulaifi, Q. Lin, M. J. Blunt, and B. Bijeljic, "Pore-Scale Dissolution by CO_2 Saturated Brine in a Multimineral Carbonate at Reservoir Conditions: Impact of Physical and Chemical Heterogeneity", Water Resour. Res. 55 (4), 3171-3193 (2019). DOI: 10.1029/2018WR024137
-
D. Prokhorov, V. Lisitsa, T. Khachkova, et al., "Topology-Based Characterization of Chemically-Induced Pore Space Changes Using Reduction of 3D Digital Images", J. Comput. Sci. 58, Article Number 101550 (2022). DOI: 10.1016/j.jocs.2021.101550