Исследована долговременная стабильность МФПУ на основе антимонида индия формата 640512 элементов с шагом 15 мкм с охладителем типа интегральный Стирлинг и блоком сопряжения. Получены зависимости показателя корректируемости от времени работы МФПУ после проведения двухточечной коррекции неоднородности. Рассмотрены МФПУ с двумя схемами ячейки БИС считывания, отличающиеся емкостями накопления и коэффициентами передачи в ячейке. Время долговременной стабильности МФПУ на основе InSb составляет несколько часов, что обеспечивают длительную работу устройства в тепловизионных системах без дополнительной калибровки.
Исследованы фотоэлектрические характеристики матричного фотоприемного устройства формата 320256 элементов с шагом 30 мкм с фоточувствительным элементом, изготовленным в эпитаксиальном слое антимонида индия на высоколегированной подложке. Среднее значение эквивалентной шуму разности температур при относительном отверстии диафрагмы 1:0,94 и времени накопления 1,46 мс составило 10,5 мК, количество дефектных элементов — 0,12 %, время корректируемости — более трех часов. Проведено сравнение данного МФПУ с аналогичными серийными МФПУ на основе объемного антимонида индия.
В работе представлены экспериментальные результаты исследования и анализа структурных свойств подложек кадмий-цинк-теллур (КЦТ), предназначенных для эпитаксии кадмийртуть-теллур (КРТ), методами рентгеновской дифрактометрии, селективного травления, инфракрасной микроскопии. Показана взаимосвязь формы и полной ширины на полувысоте кривой качания со структурными дефектами, присутствующими в материале. Преципитаты и включения второй фазы, присутствующие в материале подложки в количестве 102— 104 см-2, не оказывают влияния на значения полной ширины на полувысоте кривой качания. Уширение кривой качания вызвано повышенной плотностью дислокаций (>8105), либо их ячеистым характером распределения. Построены карты распределения значений полной ширины на полувысоте кривой качания для определения структурного совершенства по всей площади образцов, позволяющие проводить оценку пригодности пластин для дальнейшего технологического процесса.
Приведены результаты разработки и испытаний камеры коротковолнового инфракрасного диапазона спектра 0,9–1,7 мкм на основе первого отечественного матричного фотоприемного устройства формата 320256 элементов с шагом 30 мкм. Данное ФПУ создано на базе гетероструктуры InGaAs/InP и имеет пониженную температурную зависимость чувствительности. Рассмотрены основные компоненты камеры, приведены их основные характеристики. Показаны преимущества и основные области применения камеры как в составе мультиспектральных оптико-электронных систем, так и в качестве самостоятельного прибора.
Обосновывается необходимость расширения динамического диапазона в МФПУ коротковолнового ИК-спектра. Традиционно применяемые способы обладают низкой эффективностью, в особенности, в крупноформатных матрицах с шагом не более 15 мкм. Наибольшей эффективностью расширения динамического диапазона (до 100 дБ) обладают накопительные ячейки с индивидуально изменяемой передаточной характеристикой в зависимости от яркости фрагментов наблюдаемой сцены. В данной работе предлагается простой в топологической реализации и эффективный способ расширения динамического диапазона, основанный на автоподстройке времени накопления индивидуально в каждой ячейке интегральной схемы считывания. При этом сохраняется высокая крутизна и линейность преобразования в накопительных ячейках с умеренной освещенностью (до 50–70 % от максимального сигнала), но снижается чувствительность в ячейках, близких к насыщению. В результате формируется линейно-логарифмическая передаточная характеристика, обеспечивающая расширенный динамический диапазон. В работе приводятся примеры полученных изображений с расширенным динамическим диапазоном в коротковолновом ИК-спектре.
Проведено исследование влияния параметров мезаструктуры на дефектность матричных фотоприемных устройств на основе антимонида индия на область спектра 3÷5 мкм формата 320256 элементов с шагом 30 мкм. Получены зависимости одноточечной дефектности и «стойкости» (стабильности токов p–n-переходов в диапазоне рабочих обратных напряжений смещения) от скорости травления антимонида индия, глубины мезаструктур и расстояния между ними в МФЧЭ (матричных фоточувствительных элементах). Определены оптимальные величины указанных параметров мезаструктур. Определен оптимальный угол наклона стенок мезаструктуры – не более 38 градусов. Количество единичных дефектных фотодиодов составило 0,1–0,6 %.
Изложены результаты разработки и апробирования высокочувствительного автоматизированного устройства измерения коэффициента концентрации энергии в системах синтеза динамических и статических ИК-изображений в составе испытательного стенда контроля характеристик МФПУ. Реализована возможность измерения уровней облученности в широком диапазоне – 10-9–10-5 Вт/см2. Погрешность измерения размеров объекта, формируемого в плоскости изображения, не превышает единиц мкм.
Рассмотрен метод определения толщин тонких матриц на основе ИК-спектров отражения. Исследована статистика распределения толщины матриц ФЧЭ из антимонида индия формата 640 512 элементов с шагом 15 мкм, утоньшенных методом химико-динамической полировки. Показана динамика улучшения технологии утоньшения МФЧЭ.
В статье рассматривается влияние конструктивных элементов оправ ИК объектива, предназначенного для работы в диапазоне 8,5–12 мкм, на величину дополнительной (паразитной) облученности фоточувствительных элементов. Дополнительная облученность матричного фотоприёмного устройства (МФПУ) складывается из изучения от внешних источников, рассеянных на элементах объектива и собственного излучения оптической системы. Вклад каждой из составляющих зависит от внешних условий и характеристик оптической системы. Оптимизация оптических характеристик и формы оправ позволяет влиять на обе величины, что ведёт к возможности создания системы, обладающей минимальным паразитным потоком в требуемых условиях эксплуатации. Рассмотрена минимизация дополнительной (паразитной) облученности на примере систем двух типов: предназначенных для наблюдения удалённых объектов на фоне неба и на поверхности Земли.
Исследована фотоэлектрическая взаимосвязь матричных фотоприемных устройств средневолнового ИК-диапазона форматов 320256 элементов с шагом 30 мкм и 640512 элементов с шагом 15 мкм на основе антимонида индия. Определена зависимость величины взаимосвязи от толщины объемной структуры утоньшенного антимонида индия. Взаимосвязь элементов МФПУ на основе эпитаксиального антимонида индия существенно меньше, чем взаимосвязь на основе объемного антимонида индия.
Представлены исследования и анализ образцов с гетероэпитаксиальной структурой на основе твердого раствора InGaAs, выращенных методом молекулярно-лучевой эпитаксии на подложке GaAs. Определены состав и толщины слоев структуры метода-ми фотолюминесцентной спектроскопии при комнатной температуре и растровой электронной микроскопии соответственно. Измерены спектры пропускания на ИК Фурье-спектрометре. Разработана аналитическая модель спектральных характеристик исследуемых структур. Решением обратной задачи методом подгонки определены конструктивные параметры структуры и состав активного слоя InGaAs. Сравнительный анализ экспериментальных и теоретических данных показал небольшой разброс значений для толщины (менее 65 нм) и состава поглощающего слоя (менее 0,04). Показана корректность и быстродействие разработанного неразрушающего метода характеризации полупроводниковых структур.
Представлены исследования и анализ образцов с гетероэпитаксиальной структурой
на основе твердого раствора InGaAs, выращенных методом молекулярно-лучевой эпи-
таксии на подложке GaAs. Определены состав и толщины слоев структуры метода-
ми фотолюминесцентной спектроскопии при комнатной температуре и растровой
электронной микроскопии соответственно. Измерены спектры пропускания на ИК
Фурье-спектрометре. Разработана аналитическая модель спектральных характери-
стик исследуемых структур. Решением обратной задачи методом подгонки определе-
ны конструктивные параметры структуры и состав активного слоя InGaAs. Срав-
нительный анализ экспериментальных и теоретических данных показал небольшой
разброс значений для толщины (менее 65 нм) и состава поглощающего слоя
(менее 0,04). Показана корректность и быстродействие разработанного неразрушаю-
щего метода характеризации полупроводниковых структур.
- 1
- 2