Сложные системы
Архив статей журнала
Рассматриваются сопутствующие автоколебаниям нелинейные процессы (бифуркации и эволюция) в природе и частично в обществе. Они связываются с вынужденным и самоорганизующимся изменением параметров системы, а также с совокупным действием в ней множества автоколебательных элементов. Приведены примеры таких процессов.
В последние годы возникло новое перспективное общенаучное направление по исследованию процессов самоорганизации в сложных открытых системах Природы и Общества. Под открытыми системами принято понимать системы, способные обмениваться с окружающей средой веществом, энергией и информацией. Открытость в сочетании с аккумулятивностью и внутренней резонансностью системы приводит к активизации внутренних процессов самоорганизации и усложнению структуры, что и составляет суть ее эволюции.
Работа посвящена анализу путей развития теории самоорганизации для мира сложных систем. Это связано с тем, что современное миропонимание базируется на понятиях сложного мира и соответственно на взаимодействиях сложных систем, таких как нелинейность, неравновесность и хаотическое состояния в процессе эволюции. В работе кратко изложены не только все типы самоорганизации известные на данное время, но и отражена степень участия авторов в этой теме. Кроме этого отдельно рассмотрен новый тип кумулятивной самоорганизации.
В статье представлена краткая история формирования представлений по категории «сложность». Показаны современные толкования термина в различных науках. Наиболее полно изложен системный подход к пониманию сложности.
Рассматривается одна из ветвей эволюции (развѐртывания) предложенной ранее протоструктуры. Последняя понимается как инструмент самоорганизации объектов вне зависимости от их природы, представляется на числовой оси и, предположительно, моделирует общие свойства пространства-времени. Протоструктура состоит из двух компонент, которые в свою очередь формируются из циклов – систематически повторяющихся наборов отношений. Циклы состоят из узлов – отдельных разрешенных состояний, связанных определѐнными правилами. Наличие или установление связей между компонентами, циклами или узлами понимается как их взаимодействие. Предлагаются принципы, правила и критерии устойчивости при группировке узлов. Рассматривается взаимодействие двух циклов протоструктуры, в результате чего формируется узловой комплекс, устойчивая часть которого именуется каркасом. Анализируются неустойчивости – границы формирования каркаса, а также сам каркас, состоящий из базы и двух крыльев – устойчивого и изменчивого. Модель не содержит подгоночных параметров и ориентирована на выявление жестких связей между узлами каркаса: изменение позиции одного из его узлов приводит к деформации всех остальных узлов группы. Каркас представляет собой устойчивый и способный к дальнейшей эволюции набор позиций. Указывается, что ряд полученных элементов каркаса может быть интерпретирован как спектр разрешенных состояний для параметра порядка системы; другие позиции играют роль центров симметрии. В частности, схема пригодна для объяснения механизма формирования радиуса Солнца и продолжительности циклов активности на его поверхности в плоскости эклиптики.
Исследуется эволюция спектра разрешенных состояний для системы, в которой отсутствует специфика. Конкретным объектом анализа является формирование параметра порядка системы и её границ. В качестве генератора разрешенных состояний используется протоструктура – двухкомпонентная система отношений, которая представляется на числовой оси и, предположительно, играет роль первичной формы для разных объектов природы. Обе компоненты составлены из циклов - повторяющихся наборов отношений. Показано, как, с одной стороны, взаимодействие циклов, принадлежащих двум разным относительным характеристикам, приводит к возникновению иерархии и параметра порядка. С другой стороны, границы протоструктуры формируются в результате согласования двух её компонент. Для каждой из разрешенных позиций приведено аналитическое выражение.
В приложении рассмотрена часть структуры Солнечной системы в начальной стадии формирования. Структура располагается в плоскости эклиптики и включает планетные орбиты. При этом роль параметра порядка играет относительный момент количества движения. На одной из полученных границ выявленная предельная скорость совпадает со скоростью света в пределах 0,1%. Минимальный модельный радиус системы в два раза меньше гравитационного радиуса Солнца. Для большей части позиций планетных орбит согласие модельных и наблюдательных данных имеет место в пределах, близких к 1%. Указывается, что имеющиеся значительные расхождения, касающиеся, например, пояса астероидов, могут быть преодолены при анализе дальнейших этапов эволюции системы.
Предлагается методика расчета переходных форм сложных систем в процессе их эволюции (развѐртывания) без каких-либо предположений о специфике упомянутых систем. Для таких систем количественно анализируются их дискретные спектры и причины происходящих изменений. Объектом исследования является структура - совокупность
отношений на числовой оси. Используется тринитарная методика, в частности, основой анализа служат пропорции арифметическая - геометрическая - золотое сечение. Ключевая идея сводится к тому, что для разных вариантов порядка и соответствующих им видов симметрии выявляются тождественные совпадения. Увеличение их количества способствует выживанию структурных конфигураций и появлению новых видов порядка. Предложенные правила выбора разрешенных состояний позволяют сформировать протоструктуру – первичную совокупность отношений. Еѐ эволюция прослеживается по шагам от “0” стадии до появления циклов – интервалов оси, в пределах которых отношения систематически повторяются. Протоструктура состоит из двух компонент, наделена высокой степенью симметрии и включает в себя в качестве фрагментов наиболее распространенные в природе численные инварианты 1+ , 2, 2+ , 5 и 10, где -1=1+ =(1+ 5 )/2 =1,6180…- - золотое сечение. Протоструктура рассматривается впервые, она, предположительно, характеризует основные свойства пространства-времени и является сырьѐм для дальнейшей эволюции. Указывается, что методика позволяет анализировать формирование разрешенных позиций параметра порядка,
например, в Солнечной системе. С физических позиций модель характеризуется как попытка выхода на третий из предложенных Е.Вигнером уровней события - законы - принципы симметрии.
Анализируются изменения, которые происходят с разрешенными состояниями в сложной и лишенной специфики самоорганизующейся системе, если циклическая еѐ организация прекращает существование. Спектр указанных состояний генерируется предложенной ранее протоструктурой – по замыслу первичной для разных объектов природы и циклически организованной системой отношений. Она представляется на числовой оси и моделирует эволюцию (развѐртывание) системы от этапа к этапу. В частности, протоструктура формирует параметр порядка – наиболее иерархически значимую характеристику системы. Исследуемый спектр представлен двумя элементами, которые в ходе предшествующего этапа эволюции оказываются расщеплѐнными и связанными определѐнным набором правил. Рассмотрены сценарии трансформации прежних позиций спектра в новые. Ключевая идея сводится к сохранению формы имеющихся правил при одновременном изменении их содержания. Последовательное соблюдение правил приводит к формированию подсистемы в виде сателлита вблизи одного из элементов спектра. Все полученные позиции представляют параметр порядка системы. Сателлит включается в систему с помощью масштабных коэффициентов. В приложении анализируется эволюция двух элементов в плоскости эклиптики Солнечной системы; роль параметра порядка играет относительный момент количества движения. Рассматривается формирование пространственно-временных характеристик Венеры, Земли и Луны. Модель соответствует результатам наблюдений в пределах около 0,1%.
Центральная идея работы заключается в утверждении, что отношение 1/137, известное из физических экспериментов как постоянная тонкой структуры, является результатом эволюции одной из компонент спектра, характерного для сложных структур различной природы. Структура здесь понимается как совокупность отношений, представляемых на числовой оси и способных к эволюции - развѐртыванию от этапа к этапу. Рассмотрена одна из ветвей эволюции предложенной ранее протоструктуры – циклической и первичной, по замыслу, системы отношений, в которой исключена специфика природных объектов. Показано, что при взаимодействии ряда разрешенных протоструктурой состояний они расщепляются и смещаются, образуя специфический вариант порядка. Результат соответствует симметричному плану, при котором основания – позиции на числовой оси задают расщепления и в то же время расщепления задают основания. Одной из характеристик полученной структурной конфигурации является инвариант – отношение 1/137. Прослеживаются этапы формирования инварианта и его происхождение от золотого сечения. Приводится аналитическое выражение, которое не отличается от измеренной постоянной тонкой структуры в пределах 2,6*10–6 %. Выдвигается предположение, что полученный инвариант характеризует предысторию и представляет собой исходную позицию того отношения, которое известно сейчас.
Рассматривается схема формирования узлов – разрешенных состояний на участке числовой оси, позволяющая при надлежащей интерпретации обсуждать пространственно-временную структуру внутреннего Солнца в плоскости эклиптики. Участок имеет границы и уже заполнен разрешенными состояниями, сформированными в процессе эволюции протоструктуры – циклической системы отношений, которая, предположительно, является общей для разных объектов природы. Протоструктура состоит из двух компонент, в предлагаемом рассмотрении участвует одна из них. Составной еѐ частью является критерий - основанная на золотом сечении и повторяющаяся в циклах группа узлов, с помощью которых заполняется числовая ось. В пределах исследуемого участка критерий действует сам на себя: при его участии в пустых интервалах оси, которые располагаются между узлами критерия, появляются новые разрешенные состояния. Их совокупность трактуется как спектр параметра порядка системы. В приложении относительный момент количества движения в Солнечной системе рассматривается как еѐ параметр порядка, он задаѐт расстояния и периоды вращения слоѐв под поверхностью Солнца. Особенностью предлагаемой модели внутреннего Солнца является быстро вращающееся стратифицированное ядро, которое расположено сразу под поверхностью. Оно пронизано системой значительных люков, но имеет также и участки, где распределение слоѐв близко к непрерывному. Структурные результаты и физические данные (за исключением гравитационного радиуса Солнца) согласуются в пределах ~1%.
Предлагается единая схема взаимодействия позиций на числовой оси, позволяющая в приложении объяснить формирование в Солнечной системе длинных циклов солнечной активности (до ~390 тыс. лет включительно) и пояса астероидов. Анализируется каркас комплекса, сформированный при взаимодействии двух циклов протоструктуры – системы отношений, которая предполагается общей для различных объектов природы. Каркас включает в себя устойчивые части, а также части, на основе которых формируются разного рода неустойчивости. Рассматриваются варианты неустойчивостей в разных частях каркаса. Ряд полученных позиций комплекса интерпретируется как спектр разрешенных состояний для параметра порядка системы; другие позиции играют роль центров симметрии. В приложении параметр порядка трактуется как относительный момент количества движения, что позволяет обсуждать пространственно-временную структуру указанных выше частей Солнечной системы в плоскости эклиптики. Модельные результаты соответствуют наблюдениям в пределах 1-4%.
Предлагается схема взаимодействия позиций на числовой оси, позволяющая в приложении объяснить формирование структуры эпох максимума и минимума в пределах 11-летнего цикла солнечной активности. Базой анализа является каркас комплекса, сформированный при взаимодействии двух циклов протоструктуры – системы отношений, которая предполагается общей для различных объектов природы. Каркас представляет собой геометрическое образование, которое включает в себя устойчивые части, а также части, на основе которых формируются разного рода неустойчивости. В работе анализируется вариант неустойчивости, которая понимается как основная. Ряд полученных позиций интерпретируется как спектр разрешенных состояний для параметра порядка системы; другие позиции играют роль центров симметрии. В приложении параметр порядка трактуется как относительный момент количества движения в плоскости эклиптики Солнечной системы. Схема позволяет рассматривать детали эволюции пространственно-временной структуры скрытого 11-летнего цикла солнечной активности. Модельные результаты соответствуют наблюдательным данным в среднем в пределах 1,4%. Обсуждается смысл чисел Вольфа.
- 1
- 2