
Текст брошюры подготовлен по материалам лекции, прочитанной автором 21 февраля 2004 года на Малом мехмате МГУ для школьников 9—11 классов.
Читатель познакомится с такими классическими задачами на максимум и минимум, как задача Фаньяно, задача о построении фигуры максимальной площади заданного периметра, задача Штейнера о кратчайшей системе дорог и многими другими. Одна из глав посвящена коническим сечениям и их фокальным свойствам. В брошюре излагаются решения перечисленных выше задач, особое внимание уделено проблеме доказательства существования решения в экстремальных задачах. В конце каждого раздела помещён набор задач для самостоятельного решения.
Брошюра рассчитана на широкий круг читателей, интересующихся математикой: школьников старших классов, студентов младших курсов, а также школьных учителей, руководителей математических кружков. При чтении последних разделов будет полезным (но не обязательным) знакомство с началами математического анализа.

Книга содержит историю и решения знаменитых задач древности, сыгравших важную роль в становлении математики. Изложение сопровождается интересными сведениями о развитии и методах математики в Древней Греции.
Для широкого круга любителей математики.

Изогональное сопряжение относительно треугольника ( A_1A_2A_3 ) сопоставляет точке ( X ) такую точку ( Y ), что прямая ( YA_i ) симметрична прямой ( XA_i ) относительно биссектрисы угла ( A_i ) (( i = 1, 2, 3 )). Это преобразование обладает многими интересными свойствами.
В частности, оно переводит друг в друга две замечательные точки треугольника — точки Брокара. Текст брошюры представляет собой обработку записи лекции, прочитанной автором 6 ноября 1999 года на Малом мехмате для школьников 9–11 классов.

Содержит около 560 задач, снабженных подробными решениями, и 60 задач для самостоятельной работы. Большинство задач по своей тематике близки к школьной программе. Задачи разбиты на циклы, связанные общей идеей решения.
Внутри каждого цикла задачи расположены в порядке возрастания трудности. Такое разбиение поможет читателю ориентироваться в наборе задач и даст ему возможность разобраться непосредственно в заинтересовавшей его теме, не читая подряд всю книгу.
Для школьников, преподавателей, студентов педагогических институтов.

Макет книги изготовлен бригадой учеников 10д класса школы №57 под руководством Л. Шагама.
Члены бригады: Д. Задоскин, А. Никитин, К. Попков, А. Фурсов.

Книга может использоваться в качестве задачника по геометрии для 7—11 классов в сочетании со всеми действующими учебниками по геометрии. В неё включены нестандартные геометрические задачи несколько повышенного по сравнению со школьными задачами уровня. Сборник содержит около 1900 задач с полными решениями и около 150 задач для самостоятельного решения.
С помощью этого пособия можно организовать предпрофильную и профильную подготовку по математике, элективные курсы по дополнительным главам планиметрии.
Материалы данного пособия полностью покрывают тематику и сложность заданий олимпиад всех уровней и всех видов экзаменов, включая ЕГЭ и вступительные экзамены в вузы.
Для школьников, преподавателей математики, руководителей математических кружков, студентов педагогических институтов и университетов.

Книга написана на основе курса лекций, читавшегося автором студентам первого курса Математического колледжа НМУ в осенних семестрах 1994–95, 1995–96, 1996–97 и 2002–03 учебных годов. Она содержит множество задач, предлагавшихся на семинарских занятиях.
В книгу также включены полные тексты письменных экзаменов по этим курсам, а также по курсам О. В. Шварцмана (осенние семестры 1997–98 и 2001–02 учебных годов) и В. О. Бутаненко (осенний семестр 2000–01 учебного года). Некоторые из приведённых в книге задач снабжены решениями.

Геометрические задачи редко возникают на практике в той отвлеченной форме, в какой они обычно предлагаются задачниками. В реальной жизни, в технике, в науке геометрическая сторона задачи большей частью заслоняется, затушевывается посторонними элементами, из которых ее необходимо выделить, прежде чем приступить к решению.
Нередко уже одно такое обнажение геометрической основы реального задания почти равносильно его разрешению, потому что приводит запутанный вопрос к ясной математической схеме. Но умение отыскивать в конкретной задаче ее геометрическую основу, переводить реальный вопрос на язык геометрии, требует особого навыка; и, конечно, он не может быть приобретен упражнением исключительно на готовых схемах, обычно предлагаемым задачниками.

Сочинение Ю. Петерсена «Методы и теории», в настоящее время переведенное на многие европейские языки, давно уже хорошо известно и оценено по достоинству как на Западе, так и у нас. Усвоив себе взгляд**), что решение геометрических задач на построение не может быть достоянием только исключительных, особенно одаренных натур, что, напротив того, оно должно быть доступно и всякому среднему ученику, автор дает ему почву и руководящую нить для решения задач на построение (автор скромно называет свое сочинение попыткою научить учащихся, как следует приниматься за решение геом. задач на построение).

Пособие предназначено для учащихся старших классов школ с математической специализацией. Оно содержит углубленное и расширенное изложение геометрии. В нем изложена теория прямых и плоскостей, трехгранных углов, тетраэдров, сфер и других тел.
Рассмотрены методы доказательства геометрических неравенств и нахождения экстремумов. Много внимания уделено преобразованиям пространства — движениям, подобиям и аффинным преобразованиям. Книга включает около 500 задач для самостоятельного решения с указаниями и ответами.
Книга может быть использована для внеклассной работы с учащимися, для самообразования учителей, для спецкурсов и спецсеминаров по элементарной геометрии в педагогических вузах.

Данное пособие призвано возродить интерес к элементарным методам решения геометрических задач. В нем приведены яркие геометрические сведения, не вошедшие в современный школьный учебник. Например, формула Эйлера, окружность девяти точек, теорема Птолемея, геометрические неравенства и многое другое.
Книга адресована всем, кто желает расширить и углубить знания по элементарной геометрии, — от школьников средних классов до учителей математики и студентов педагогических вузов.

Воспитание творческой активности учащихся в процессе изучения ими математики является одной из актуальных целей нашего школьного преподавания. Правильно поставленное упражнение учащихся в решении задач — основное средство для достижения указанной цели. Вполне оправдано поэтому то повышенное внимание, которое уделяют этому аспекту преподавания математики передовые учителя нашей школы.
Если обратиться, однако, к учебно-методической литературе по математике, будь то отечественной или иностранной, то приходится констатировать, что при наличии большого количества в своем роде весьма ценных работ, посвященных методам решения по отдельным типам математических задач (арифметических, конструктивно-геометрических и т. д.), до сего времени фактически отсутствовали труды, в которых серьезно разрабатывалась бы общая методика решения математических задач.
Между тем ограничение лишь специальными способами решения отдельных типов задач создает реальную опасность того, что учащиеся ограничатся усвоением одних шаблонных приемов и не приобретут умения самостоятельно справляться с «незнакомыми» задачами.