1. Wen Y., Zhao C., Chen J., Tian L., Wu B., Xie W., Dong T. (2024) Gandouling regulates ferroptosis and improves neuroinflammation in Wilson’s disease through the LCN2/NLRP3 signaling pathway. J. Inflamm. Res., 17, 5599-5618. DOI: 10.2147/JIR.S465341
2. Zhou Q., Zhang Y., Lu L., Zhang H., Zhao C., Pu Y., Yin L. (2022) Copper induces microglia-mediated neuroinflammation through ROS/NF-κB pathway and mitophagy disorder. Food Chem. Toxicol., 168, 113369. DOI: 10.1016/j.fct.2022.113369
3. Chen L.L., Fan Y.G., Zhao L.X., Zhang Q., Wang Z.Y. (2023) The metal ion hypothesis of Alzheimer’s disease and the anti-neuroinflammatory effect of metal chelators. Bioorg. Chem., 131, 106301. DOI: 10.1016/j.bioorg.2022.106301
4. Aloysius Dhivya M., Sulochana K.N., Bharathi Devi S.R. (2022) High glucose induced inflammation is inhibited by copper chelation via rescuing mitochondrial fusion protein 2 in retinal pigment epithelial cells. Cell. Signal., 92, 110244. DOI: 10.1016/j.cellsig.2022.110244
5. Zhang L., Tsai I.C., Ni Z., Chen B., Zhang S., Cai L., Xu Q. (2024) Copper chelation therapy attenuates periodontitis inflammation through the cuproptosis/autophagy/lysosome axis. Int. J. Mol. Sci., 25(11), 5890. DOI: 10.3390/ijms25115890
6. Guo H., Jing L., Xia C., Zhu Y., Xie Y., Ma X., Fang J., Wang Z., Zuo Z. (2024) Copper promotes LPS-induced inflammation via the NF-κB pathway in bovine macrophages. Biol. Trace Elem. Res., 202(12), 5479-5488. DOI: 10.1007/s12011-024-04107-6
7. Deng H., Zhu S., Yang H., Cui H., Guo H., Deng J., Ren Z., Geng Y., Ouyang P., Xu Z., Deng Y., Zhu Y. (2023) The dysregulation of inflammatory pathways triggered by copper exposure. Biol. Trace Elem. Res., 201(2), 539-548. DOI: 10.1007/s12011-022-03171-0
8. Rossi-George A., Guo C.J., Oakes B.L., Gow A.J. (2012) Copper modulates the phenotypic response of activated BV2 microglia through the release of nitric oxide. Nitric Oxide, 27(4), 201-209. DOI: 10.1016/j.niox.2012.07.002
9. Cuzzocrea S., Persichini T., Dugo L., Colasanti M., Musci G. (2003) Copper induces type II nitric oxide synthase in vivo. Free Radic. Biol. Med., 34(10), 1253-1262. DOI: 10.1016/s0891-5849(03)00110-2
10. Wei H., Frei B., Beckman J.S., Zhang W.J. (2011) Copper chelation by tetrathiomolybdate inhibits lipopolysaccharide-induced inflammatory responses in vivo. Am. J. Physiol. Heart Circ. Physiol., 301(3), H712-H720. DOI: 10.1152/ajpheart.01299.2010
11. Craciun L., Muroy S.E., Saijo K. (2024) Role of copper during microglial inflammation. bioRxiv [Preprint], 10.1101/2024.09.18.613750. 10.1101/2024.09.18.613750. DOI: 10.1101/2024.09.18.613750.DOI
12. Goshi N., Morgan R.K., Lein P.J., Seker E. (2020) A primary neural cell culture model to study neuron, astrocyte, and microglia interactions in neuroinflammation. J. Neuroinflammation, 17(1), 155. DOI: 10.1186/s12974-022-02391-4
13. Стельмашук Е.В., Капкаева М.Р., Розанова Н.А., Александрова О.П., Генрихс Е.Е., Обмолов В.В., Новикова С.В., Исаев Н.К. (2022) Влияние индуктора нейровоспаления на компоненты нейроваскулярной единицы головного мозга in vitro. Российский физиологический журнал им. И.М. Сеченова, 108(5), 686-696. DOI: 10.31857/S0869813922050107
Stelmashook E.V., Kapkaeva M.R., Rozanova N.A., Alexandrova O.P., Genrikhs E.E., Obmolov V.V., Novikova S.V. Isaev N.K. (2022) The in vitro effect of the neuroinflammation inducer on brain neurovascular unit components. J. Evol. Biochem. Phys., 58(3), 856-864. DOI: 10.1134/S002209302203019X
14. Stelmashook E.V., Alexandrova O.P., Genrikhs E.E., Novikova S.V., Salmina A.B., Isaev N.K. (2022) Effect of zinc and copper ions on cadmium-induced toxicity in rat cultured cortical neurons. J. Trace Elem. Med. Biol., 73, 27012. DOI: 10.1016/j.jtemb.2022.127012
15. Karve I.P., Taylor J.M., Crack P.J. (2016) The contribution of astrocytes and microglia to traumatic brain injury. Br. J. Pharmacol., 173(4), 692-702. DOI: 10.1111/bph.13125
16. Genrikhs E.E., Shedenkova M.O., Voronkov D.N., Isaev N.K., Stelmashook E.V. (2024) Activation of microglia and astroglia in unilateral focal traumatic brain injury in rats. Bull. Exp. Biol. Med., 178(2), 196-201. DOI: 10.1007/s10517-025-06306-0
17. Saura J., Angulo E., Ejarque A., Casadó V., Tusell J.M., Moratalla R., Chen J.-F., Schwarzschild M.A., Lluis C., Franco R., Serratosa J. (2005) Adenosine A2A receptor stimulation potentiates nitric oxide release by activated microglia. J. Neurochem., 95(4), 919-929. DOI: 10.1111/j.1471-4159.2005.03395.x
18. Saura J. (2007) Microglial cells in astroglial cultures: a cautionary note. J. Neuroinflammation., 4, 26. DOI: 10.1186/1742-2094-4-26
19. Coleman J.W. (2001) Nitric oxide in immunity and inflammation. Int. Immunopharmacol., 1(8), 1397-1406. DOI: 10.1016/s1567-5769(01)00086-8
20. Guzik T.J., Korbut R., Adamek-Guzik T. (2003) Nitric oxide and superoxide in inflammation and immune regulation. J. Physiol. Pharmacol., 54(4), 469-487.
21. Quintas C., Pinho D., Pereira C., Saraiva L., Gonçalves J., Queiroz G. (2014) Microglia P2Y6 receptors mediate nitric oxide release and astrocyte apoptosis. J. Neuroinflammation, 11, 141. DOI: 10.1186/s12974-014-0141-3
22. More S., Choi D.-K. (2017) Neuroprotective role of atractylenolide-I in an in vitro and in vivo model of Parkinson’s disease. Nutrients, 9(5), 451. DOI: 10.3390/nu9050451
23. Hwang J.H., Kumar V.R., Kang S.Y., Jung H.W., Park Y.-K. (2018) Effects of flower buds extract of Tussilago farfara on focal cerebral ischemia in rats and inflammatory response in bV2 microglia. Chin. J. Integr. Med., 24(11), 844-852. DOI: 10.1007/s11655-018-2936-4
24. Galea E., Feinstein D.L., Reis D.J. (1992) Induction of calcium-independent nitric oxide synthase activity in primary rat glial cultures. Proc. Natl. Acad. Sci. USA, 89(22), 10945-10949. DOI: 10.1073/pnas.89.22.10945
25. Hamby M.E., Hewett J.A., Hewett S.J. (2006) TGF-beta1 potentiates astrocytic nitric oxide production by expanding the population of astrocytes that express NOS-2. Glia, 54(6), 566-577. DOI: 10.1002/glia.20411
26. Moriyama M., Fujitsuka S., Kawabe K., Takano K., Nakamura Y. (2018) Zinc potentiates lipopolysaccharideinduced nitric oxide production in cultured primary rat astrocytes. Neurochem. Res., 43(2), 363-374. DOI: 10.1007/s11064-017-2431-5
27. Kim S., Son Y. (2021) Astrocytes stimulate microglial proliferation and M2 polarization in vitro through crosstalk between astrocytes and microglia. Int. J. Mol. Sci., 22(16), 8800. DOI: 10.3390/ijms22168800
28. Colasanti M., Persichini T., Venturini G., Polticelli F., Musci G. (2000) Modulation of the nitric oxide pathway by copper in glial cells. Biochem. Biophys. Res. Commun., 275(3), 776-782. DOI: 10.1006/bbrc.2000.3396
29. Zhang W., Yang X., Liu J., Pan Y., Zhang M., Chen L. (2022) Senescent phenotype of astrocytes leads to activation of BV2 microglia and N2a neuronal cells death. Molecules, 27(18), 5925. DOI: 10.3390/molecules27185925
30. Canedo T., Portugal C.C., Socodato R., Almeida T.O., Terceiro A.F., Bravo J., Silva A.I., Magalhães J.D., Guerra-Gomes S., Oliveira J.F., Sousa N., Magalhães A., Relvas J.B., Summavielle T. (2021) Astrocyte-derived TNF and glutamate critically modulate microglia activation by methamphetamine. Neuropsychopharmacology, 46(13), 2358-2370. DOI: 10.1038/s41386-021-01139-7
31. Silva A.I., Socodato R., Pinto C., Terceiro A.F., Canedo T., Relvas J.B., Saraiva M., Summavielle T. (2024) IL-10 and Cdc42 modulate astrocyte-mediated microglia activation in methamphetamine-induced neuroinflammation. Glia, 72(8), 1501-1517. DOI: 10.1002/glia.24542
32. Zanier E.R., Fumagalli S., Perego C., Pischiutta F., de Simoni M.G. (2015) Shape descriptors of the “never resting” microglia in three different acute brain injury models in mice. Intensive Care Med. Exp., 3(1), 39. DOI: 10.1186/s40635-015-0039-0
33. Hanisch U.-K., Kettenmann H. (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci., 10(11), 1387-1394.