1. van Loo G., Bertrand M.J.M. (2023) Death by TNF: a road to inflammation. Nat. Rev. Immunol., 23(5), 289-303. DOI: 10.1038/s41577-022-00792-3
2. Schütze S., Wiegmann K., Machleidt T., Krönke M. (1995) TNF-induced activation of NF-κB. Immunobiology, 193(2-4), 193-203. DOI: 10.1016/s0171-2985(11)80543-7
3. Wang L., Du F., Wang X. (2008) TNF-α induces two distinct caspase-8 activation pathways. Cell, 133(4), 693-703. DOI: 10.1016/j.cell.2008.03.036
4. Keller L.A., Merkel O., Popp A. (2022) Intranasal drug delivery: opportunities and toxicologic challenges during drug development. Drug Deliv. Transl. Res., 12(4), 735-757. DOI: 10.1007/s13346-020-00891-5
5. Аляутдин Р.Н., Иежица И.Н., Агарвал Р. (2014) Транспорт лекарственных средств через роговицу глаза: перспективы применения липосомальных лекарственных форм. Вестник офтальмологии, 130(4), 117-122.
Aliautdin R.N.,Iezhitsa I.N., Agarval R. (2014) Transcorneal drug delivery: prospects for the use of liposomes. Russian Annals of Ophthalmology, 130(4), 117-122.
6. Bai S., Yang T., Abbruscato T.J., Ahsan F. (2008) Evaluation of human nasal RPMI 2650 cells grown at an air-liquid interface as a model for nasal drug transport studies. J. Pharm. Sci., 97(3), 1165-1178. DOI: 10.1002/jps.21031
7. Kreft M.E., Jerman U.D., Lasič E., Lanišnik Rižner T., Hevir-Kene N., Peternel L., Kristan K. (2015) The characterization of the human nasal epithelial cell line RPMI 2650 under different culture conditions and their optimization for an appropriate in vitro nasal model. Pharm. Res., 32(2), 665-679. DOI: 10.1007/s11095-014-1494-0
8. Merkle H.P., Ditzinger G., Lang S.R., Peter H., Schmidt M.C. (1998) In vitro cell models to study nasal mucosal permeability and metabolism. Adv. Drug Deliv. Rev., 29(1-2), 51-79. DOI: 10.1016/s0169-409x(97)00061-6
9. Бреславец Д.И., Абаленихина Ю.В., Щулькин А.В., Буйлина С.Г., Золотова А.В., Якушева Е.Н. (2025) Относительное количество белков межклеточных контактов в динамике формирования монослоя клеток линии RPMI2650. Технологии живых систем, 22(2), 58-65.
Breslavecz D.I., Abalenixina Yu.V., Shhul’kin A.V., Bujlina S.G., Zolotova A.V., Yakusheva E.N. (2025) The relative number of intercellular contact proteins in the dynamics of the formation of a monolayer of cells of the RPMI2650 line. Technologies of Living Systems, 22(2), 58-65.
10. Демина О.М., Румянцев А.Г., Карпова Е.И. (2023) Сигнальные пути транскрипционных факторов и роль генов в их регуляции при акне тяжелой степени. Иммунология, 44(6), 764-775. DOI: 10.33029/1816-2134-2023-44-6-764-775 EDN: BMRXKC
Demina O.M., Rumyantsev A.G., Karpova E.I. (2023) Signaling pathways of transcription factors and the role of genes in their regulation in severe acne. Immunologiya, 44(6), 764-775.
11. Iacobazzi D., Convertini P., Todisco S., Santarsiero A., Iacobazzi V., Infantino V. (2023) New insights into NF-κB signaling in innate immunity: focus on immunometabolic crosstalks. Biology (Basel), 12(6), 776. DOI: 10.3390/biology12060776
12. Lopez-Castejon G., Brough D. (2011) Understanding the mechanism of IL-1β secretion. Cytokine Growth Factor Rev., 22(4), 189-195. DOI: 10.1016/j.cytogfr.2011.10.001
13. Fujisawa T., Chang M.M.-J., Velichko S., Thai P., Hung L.-Y., Huang F., Phuong N., Chen Y., Wu R. (2011) NF-κB mediates IL-1β- and IL-17A-induced MUC5B expression in airway epithelial cells. Am. J. Respir. Cell Mol. Biol., 45(2), 246-252. DOI: 10.1165/rcmb.2009-0313OC
14. Sadati S., Khalaji A., Bonyad A., Khoshdooz S., Hosseini Kolbadi K.S., Bahrami A., Moeinfar M.S., Morshedi M., Ghamsaraian A., Eterafi M., Eshraghi R., Khaksary Mahabady M., Mirzaei H. (2025) NF-κB and apoptosis: colorectal cancer progression and novel strategies for treatment. Eur. J. Med. Res., 30, 616. DOI: 10.1186/s40001-025-02734-w
15. Peng T., Tao X., Xia Z., Hu S., Xue J., Zhu Q., Pan X., Zhang Q., Li S. (2022) Pathogen hijacks programmed cell death signaling by arginine ADPR-deacylization of caspases. Mol. Cell, 82(10), 1806-1820.e8. DOI: 10.1016/j.molcel.2022.03.010
16. Heo J.W., Kim M.J., Yang Y.J., Choi H.N., Kim K.Y., Oh T.W., Yang J.-H., Kim Y.H., Park K.I. (2025) The role of tight junctions in the pathogenesis of inflammatory bowel disease: immune modulation and barrier dysfunction. Mol. Cell. Toxicol., 21(3), 495-506. DOI: 10.1007/s13273-025-00545-y
17. Zihni C., Mills C., Matter K., Balda M.S. (2016) Tight junctions: from simple barriers to multifunctional molecular gates. Nat. Rev. Mol. Cell Biol., 17(9), 564-580. DOI: 10.1038/nrm.2016.80
18. McKay D.M., Baird A.W. (1999) Cytokine regulation of epithelial permeability and ion transport. Gut, 44(2), 283-289.