EISSN 1726-3522
Язык: ru

Статья: МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ РАБОТЫ СКВАЖИНЫ В СЛУЧАЕ ДВУМЕРНОЙ ФИЛЬТРАЦИИ В АНИЗОТРОПНОМ НЕОДНОРОДНОМ ПЛАСТЕ (2020)

Читать онлайн

Поставлена плоская (двумерная) задача о математическом моделировании работы скважины в анизотропном неоднородном пласте грунта с раздельной анизотропией и неоднородностью, когда контур питания произвольный. Рассматривается совершенная скважина, когда она полностью вскрывает пласт своей рабочей частью (фильтром). Проницаемость грунта характеризуется тензором второго ранга, компоненты которого моделируются степенной функцией координат. Гомеоморфным аффинным преобразованием координат эта задача приводится к каноническому виду, что значительно упрощает ее исследование. Получено в конечном виде аналитическое решение задачи о дебите скважины с конкретным эллиптическим контуром питания, а также в случае, когда контур питания удален в бесконечность. В случае произвольного гладкого контура питания задача о дебите редуцирована к системе сингулярного интегрального уравнения и интегрального соотношения, которая решена численно методом дискретных особенностей. Исследовано влияние на дебит анизотропии, неоднородности пласта и формы контура питания.

Ключевые фразы: ТЕОРИЯ ФИЛЬТРАЦИИ, СКВАЖИНА, ПОРИСТАЯ СРЕДА, АНИЗОТРОПНЫЙ НЕОДНОРОДНЫЙ ПЛАСТ, ТЕНЗОР ПРОНИЦАЕМОСТИ, ДЕБИТ СКВАЖИНЫ, ОБОБЩЕННЫЙ ЗАКОН ДАРСИ, СИНГУЛЯРНАЯ ЛИНИЯ, ЭЛЛИПТИЧЕСКИЙ КОНТУР ПИТАНИЯ, FILTRATION THEORY, WELL, POROUS MEDIUM, ANISOTROPIC HETEROGENEOUS LAYER, PERMEABILITY TENSOR, WELL FLOW RATE, GENERALIZED DARCYS LAW, SINGULAR LINE, ELLIPTICAL POWER CONTOUR
Автор (ы): Пивень Владимир Федотович, Лекомцев Денис Геннадьевич
Журнал: ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ И ПРОГРАММИРОВАНИЕ

Идентификаторы и классификаторы

УДК
532.546. Движение жидкостей через пористую среду, например в колонках с насадкой
eLIBRARY ID
42544245
Для цитирования:
ПИВЕНЬ В. Ф., ЛЕКОМЦЕВ Д. Г. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ РАБОТЫ СКВАЖИНЫ В СЛУЧАЕ ДВУМЕРНОЙ ФИЛЬТРАЦИИ В АНИЗОТРОПНОМ НЕОДНОРОДНОМ ПЛАСТЕ // ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ И ПРОГРАММИРОВАНИЕ. 2020. Т. 21 № 1
Текстовый фрагмент статьи