Методами электронографии, электронной и рентгеновской дифракции изучено строение пленок, полученных отжигом в азоте предварительно нанесенных слоев металлического алюминия на (0001) поверхность сапфировых пластин. Пленки нитрида алюминия на подложках сапфира растут, в соответствии с ориентационным соотношением (0001)<10 1 0>AlN║ ║(0001)<11 2 0>Al2O3. Наилучшие результаты были получены при нитридизации алюминиевых пленок на сапфире в режиме нагрева до температуры 1200 °С (со скоростью нагрева ~100 °С/час) и выдержке в течении 1 часа.
Методами рентгеновской дифракции и магнитометрии изучено строение пленок, полученных отжигом на воздухе предварительно нанесенных чередующихся слоев металлов Co, Fe и Ni, Fe на (0001)-поверхность сапфировых пластин. Показано, что слои ферритов кобальта и никеля толщиной 30 нм обладают коэрцитивной силой порядка 1200 Э и 800 Э соответственно. Методами магнитной силовой микроскопии продемонстрирована возможность формирования магнитной доменной структуры в пленках феррита никеля и кобальта.
В данной работе предложена методика формирования бинарных пленок AlN и ZnO неполярных и полуполярных ориентаций на сапфире термохимическим и термическим методами, а также выполнена их характеризация дифракционными и микроскопическими методами. Показано, что отжиг подложек сапфира с террасно-ступенчатой наноструктурой поверхности в восстановительной газовой среде при высокой температуре 1650 °С позволяет получать сплошные неполярные монокристаллическая пленка AlN с гексагональной структурой типа вюрцита. Приведены результаты постростового отжига (1200 °С) поликристаллической пленки ZnO толщиной около 1 мкм, нанесенной на поверхность темплейта (11 2 0) AlN/-Al2O3. Анализ полюсных фигур рентгеновской дифракции демонстрирует формирование в результате постростового отжига текстурированной полуполярной пленки 1011 ZnO. Такая методика формирования неполярных и полуполярных пленок AlN и ZnO может найти широкое применение в пьезоэлетронике и оптоэлектронике.
В работе проведено исследование влияния потоков атомов железа на формирование слоев графена на поверхности монокристаллов карбида кремния в процессе его вакуумной термодеструкции. Установлены скорости встречных потоков железа позволяющих формировать композитные графеновые слои различной структуры с внедренными атомами железа. Показано, что в отсутствие потоков железа в процессе вакуумной термодеструкции на поверхности карбида кремния формируется только многослойный графен (островки с линейными размерами 3–5 мкм) с разным содержанием дефектов.
Методами рентгеновской дифракции и магнитно-силовой микроскопии исследовались пленки системы Bi25FeO39-BFO на R-срезах сапфира. В нанокристаллах BFO наблюдался эффект обратного магнитоэлектрического переключения при приложении напряжения величиной ±10 В вдоль поверхности пленки. Величина магнитного момента нанокристаллов BFO, определенная в модели двух малых магнитов, была порядка 10-8–10-9 emu.