ПРИКЛАДНАЯ МАТЕМАТИКА И ФУНДАМЕНТАЛЬНАЯ ИНФОРМАТИКА
Архив статей журнала
В работе рассматривается разработка клиент-серверного приложения для автоматизации работы заказов в продаже на примере магазина цветов. Исследуется и реализовывается алгоритм машинного обучения k-ближайшего соседа. Результатом является жизнеспособный продукт по продаже товаров цветочной продукции с использованием современного набора технологий и языков программирования.
Для определения и извлечения сущностей и связей используются методы анализа текста, такие как метод обнаружения именованных сущностей и метод классификации ролей. Для повышения точности и эффективности извлечения применяются такие методы, как метод опорных векторов и метод условных случайных полей. Предложенный подход демонстрирует многообещающие результаты в точной и эффективной разметке образовательных материалов на математические термины.
Рассматривается задача модерации комментариев с фильтрацией негативного контента. Используется фреймворк PySpark для анализа тональности комментариев на основе библиотеки Apache Spark. Алгоритм считывает текст комментария и определяет его эмоциональный окрас. Инструментарий может использоваться на образовательных веб-сервисах, где можно фильтровать негативные комментарии и предотвращать их появление на сайте, что в свою очередь улучшает качество контента и безопасность для пользователей.
В статье исследуется применение нейронных сетей для решения вариационных неравенств. Проведены эксперименты, в рамках которых разработаны архитектуры нейронных сетей разной сложности. Эти архитектуры успешно решают широкий спектр задач, включая системы уравнений и неравенств, а также вариационные неравенства. Более быстрые и точные методы решения вариационных неравенств могут существенно повысить эффективность вычислительных процессов и оптимизацию систем. Результаты экспериментов свидетельствуют о перспективности использования нейронных сетей в этой области и могут послужить основой для дальнейших исследований и разработок.
В данной статье рассматривается способ решения задачи матчинга в сфере обработки естественного языка при помощи ранжирующих моделей. В ходе проведения исследования был подготовлен размеченный набор данных, на основе которого обучена модель машинного обучения для решения задачи ранжирования; реализована персональная метрика оценки качества работы обученной модели. Качественное решение задачи матчинга средствами машинного обучения позволит минимизровать или исключить работу человека в процессе сопоставления объектов, схожих по своему смыслу, но различных по своему текстовому или признаковому описанию.
В данной статье рассматривается применение нейронных сетей LSTM для прогнозирования потребления электроэнергии. Для обучения и тестирования модели использовались данные о потреблении электроэнергии за несколько лет. Для повышения качества прогнозирования были проведены эксперименты с различными параметрами нейронной сети, такими как число нейронов и глубина истории данных. Результаты показали, что нейронная сеть LSTM обеспечивает высокую точность прогнозирования объемов потребления электроэнергии на основе статистических данных. Эти результаты могут быть полезными для энергетических компаний и государственных органов, занимающихся прогнозированием и планированием энергетических потребностей.
В статье рассматривается проектирование и реализация построения рекомендаций в web-приложении онлайн-библиотеки. Исследуются такие методы построения рекомендаций, как контентная и коллаборативная фильтрации, и возможные варианты их реализации. В числе исследованных вариантов - такие методы машинного обучения, как кластеризация и регрессия, представленные тематическим моделированием и прогнозированием предпочтений, и в статье описываются алгоритмы, лежащие в основе каждого из выбранных методов, а также представляются результаты работы полученных моделей. Разработанное решение реализовано в виде сервиса онлайн-библиотеки и помогает пользователям с поиском интересующей их литературы среди книг, размещенных на ресурсе.
Задача извлечения структурированных данных из слабоструктурированного текстового представления информации является трудоёмкой, но актуальной. В статье рассмотрена задача структурирования данных для формирования дескрипторной модели студента с его компетенциями. Разработано решение, которое показывает хорошие результаты при условии, что в наличии есть большое количество данных для обучения. Данное решение можно переработать и распространить на другие области, например, проектную деятельность.